Project/Area Number |
21K20532
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0501:Physical chemistry, functional solid state chemistry, organic chemistry, polymers, organic materials, biomolecular chemistry, and related fields
|
Research Institution | Nagoya University |
Principal Investigator |
Kinoshita Naoya 名古屋大学, 工学研究科, 中核的研究機関研究員 (00910564)
|
Project Period (FY) |
2021-08-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 分子性導体 / 有機伝導体 / 酸化還元系 / 分子性結晶 / 酸化還元 / 電池材料 / 有機材料 |
Outline of Research at the Start |
持続可能社会の実現に向けて、高性能な蓄電機能や光電変換機能を持つ有機電子材料の開拓は重要な研究課題である。本研究では、三次元的な周期構造を持つ強等方性K4格子のトポロジーに起因した機能の開拓を目的として、酸化還元活性かつ優れた電気伝導性を示す分子骨格を導入した新規立体π共役分子を開発することで、高効率なエネルギー変換・貯蔵機能を持つ次世代の有機電池材料の創出を目指す。
|
Outline of Final Research Achievements |
In this study, we aimed to develop novel three-dimensional π-conjugated molecules with redox-active molecular frameworks for the purpose of exploring functions originating from the topology of the strongly isotropic K4 lattice with a three-dimensional periodic structure. We investigated the development of a novel steric π-conjugated molecule, PDI-Δ, which had not been synthesized in previous research, and succeeded in developing it by utilizing solid-phase synthesis using a ball mill apparatus. The existence of PDI dimers and tetramers with cyclic structures was also suggested. Furthermore, we also worked on the preparation of molecular crystals with a diamond lattice, which is known as a strongly isotropic lattice like the K4 lattice, and succeeded in synthesizing a novel pyridyl-triimide ligand.
|
Academic Significance and Societal Importance of the Research Achievements |
エネルギー問題やCO2排出削減の観点から、低コスト、低環境負荷な有機電子材料の開発が求められている。その中でも、電気エネルギーを高効率で利用できる電池材料の開拓において、構造的に安定な分子性K4材料の構築が必要であった。本研究では、従来系よりもπ共役を拡張した新規誘導体の合成に取り組み、その合成に成功した。本研究で開発した新たな合成法に基づいた更なる新規誘導体の合成など学術的発展が見込まれる。
|