• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Heterogeneity and Generalizability of the effectiveness of intensive blood pressure control to prevent cardiovascular events.

Research Project

Project/Area Number 21K20900
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0902:General internal medicine and related fields
Research InstitutionKyoto University

Principal Investigator

Inoue Kosuke  京都大学, 医学研究科, 特定准教授 (80903830)

Project Period (FY) 2021-08-30 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords高血圧 / 異質性 / 心血管 / 血圧管理 / 因果推論 / 機械学習 / 心血管疾患 / 一般化 / 心血管イベント
Outline of Research at the Start

高血圧は生命予後・健康寿命に強く影響し、その患者数は世界で上昇傾向にある。近年のランダム化比較試験(RCT)において厳格な血圧管理により心血管イベント発症リスクが抑制されることが示されたが、具体的にどのような集団に厳格な血圧管理が効果的であるか、という問いに対する十分なエビデンスは存在しない。本研究では、世界の高血圧診療に大きなインパクトを与えたRCTのデータから厳格な血圧管理が効果的な集団を同定し、日米の全国大規模データも併せて用いることで日米の一般集団に同様の治療介入をした際に期待される効果を推定する。

Outline of Final Research Achievements

Using two large RCTs investigating the effect of intensive blood pressure control to prevent cardiovascular events (SPRINT, ACCORD), we applied state-of-art machine learning algorithm, causal forest, to identify the heterogeneity in the treatment effect across individuals. Moreover, we developed a new concept "high-benefit approach" targeting individuals with high-benefit and showed its clinical usefulness over conventional "high-risk approach".

Academic Significance and Societal Importance of the Research Achievements

本研究結果は、従来のリスクが高い集団に治療を行うという「高リスク・アプローチ」の医療戦略に疑問を投げかけ、効果の異質性に着目した新しい個別化医療戦略「高ベネフィット・アプローチ」を提唱するものであり、次世代の医療の在り方を議論するうえで重要なエビデンスになる。

Report

(3 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • Research Products

    (7 results)

All 2023 2022 Other

All Int'l Joint Research (1 results) Journal Article (2 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (3 results) (of which Int'l Joint Research: 1 results) Remarks (1 results)

  • [Int'l Joint Research] UCLA(米国)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Machine-learning-based high-benefit approach versus conventional high-risk approach in blood pressure management2023

    • Author(s)
      Inoue Kosuke、Athey Susan、Tsugawa Yusuke
    • Journal Title

      International Journal of Epidemiology

      Volume: Online ahead of print Issue: 4 Pages: 1243-1256

    • DOI

      10.1093/ije/dyad037

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Association of Intensive Blood Pressure Control and Living Arrangement on Cardiovascular Outcomes by Race2022

    • Author(s)
      Inoue Kosuke、Watson Karol E.、Kondo Naoki、Horwich Tamara、Hsu William、Bui Alex A. T.、Duru O. Kenrik
    • Journal Title

      JAMA Network Open

      Volume: 5 Issue: 3 Pages: e222037-e222037

    • DOI

      10.1001/jamanetworkopen.2022.2037

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Machine-learning based high-benefit approach versus conventional high-risk approach in blood pressure management2023

    • Author(s)
      Kosuke Inoue
    • Organizer
      Society for Epidemiologic Research
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] YIA候補演題:2023

    • Author(s)
      機械学習を用いた次世代の個別化降圧戦略
    • Organizer
      日本内分泌学会総会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 厳格な血圧管理が心血管イベントを抑制する効果の、人種・居住形態による異質性評価:大規模RCTの一般化応用2022

    • Author(s)
      井上浩輔
    • Organizer
      日本疫学会
    • Related Report
      2021 Research-status Report
  • [Remarks] 高血圧診療における次世代の個別化医療戦略を提唱-機械学習により個人の治療効果を予測する時代へ-

    • URL

      https://www.kyoto-u.ac.jp/ja/research-news/2023-04-05

    • Related Report
      2022 Annual Research Report

URL: 

Published: 2021-10-22   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi