Chromatic redshift and homotopical algebraic geometry
Project/Area Number |
22540087
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Okayama University |
Principal Investigator |
TORII Takeshi 岡山大学, 大学院・自然科学研究科, 准教授 (30341407)
|
Project Period (FY) |
2010 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2012: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2011: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2010: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 安定ホモトピー圏 / クロマティック赤方偏移 / ホモトピー論的代数幾何 / ホモトピー固定点スペクトラム / Adamsスペクトル系列 / HKR指標 / Morava E理論 / Chern指標 / 可換S代数 / ホモトピカル代数幾何 / クロマティックレベル / 形式群 / ホモトピー固定点 |
Research Abstract |
I studied the relationship among the layers of the chromatic filtration in the stable homotopy category bymeans of homotopical algebraic geometry. I obtained the relationship between the Hecke operators on the Morava E-theories with different heights. I also showed that any spectrum which is local with respect to the Morava K-theory can be obtained as the homotopy fixed point spectrum for its Morava module in collaboration with D.G.Davis. Furthermore, I obtained results on the embeddings of the module categories for the Galois extensions of commutative S-algebras.
|
Report
(4 results)
Research Products
(21 results)