• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Chromatic redshift and homotopical algebraic geometry

Research Project

Project/Area Number 22540087
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOkayama University

Principal Investigator

TORII Takeshi  岡山大学, 大学院・自然科学研究科, 准教授 (30341407)

Project Period (FY) 2010 – 2012
Project Status Completed (Fiscal Year 2012)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2012: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2011: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2010: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords安定ホモトピー圏 / クロマティック赤方偏移 / ホモトピー論的代数幾何 / ホモトピー固定点スペクトラム / Adamsスペクトル系列 / HKR指標 / Morava E理論 / Chern指標 / 可換S代数 / ホモトピカル代数幾何 / クロマティックレベル / 形式群 / ホモトピー固定点
Research Abstract

I studied the relationship among the layers of the chromatic filtration in the stable homotopy category bymeans of homotopical algebraic geometry. I obtained the relationship between the Hecke operators on the Morava E-theories with different heights. I also showed that any spectrum which is local with respect to the Morava K-theory can be obtained as the homotopy fixed point spectrum for its Morava module in collaboration with D.G.Davis. Furthermore, I obtained results on the embeddings of the module categories for the Galois extensions of commutative S-algebras.

Report

(4 results)
  • 2012 Annual Research Report   Final Research Report ( PDF )
  • 2011 Annual Research Report
  • 2010 Annual Research Report
  • Research Products

    (21 results)

All 2012 2011 2010 Other

All Journal Article (13 results) (of which Peer Reviewed: 13 results) Presentation (8 results)

  • [Journal Article] Rational homotopy type of the moduli of representations with Borel mold2012

    • Author(s)
      Nakamoto Kazunori and Torii Takeshi
    • Journal Title

      Forum Math

      Volume: 24 no. 3 Pages: 507-538

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] Every K(n)-local spectrum is the homotopy fixed points of its Morava module2012

    • Author(s)
      Daniel G Davis and Torii Takeshi
    • Journal Title

      Proc. Amer. Math. Soc

      Volume: 140 no. 3 Pages: 1097-1103

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] Rational homotopy type of the moduli of representations with Borel mold2012

    • Author(s)
      Kazunori Nakamoto and Takeshi Torii
    • Journal Title

      Forum Mathematicum

      Volume: 24 Issue: 3 Pages: 507-538

    • DOI

      10.1515/form.2011.071

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Every K(n)-local spectrum is the homotopy fixed points of its Morava module2012

    • Author(s)
      Daniel G Davis and Takeshi Torii
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 140 Issue: 3 Pages: 1097-1103

    • DOI

      10.1090/s0002-9939-2011-11189-4

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Topology of the representation varieties with Borel mold for unstable cases2011

    • Author(s)
      Nakamoto Kazunori and Torii Takeshi
    • Journal Title

      J. Aust. Math. Soc

      Volume: 91 no. 1 Pages: 55-87

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] K(n)-localization of the K(n+1)-local E_{n+1}-Adams spectral sequences2011

    • Author(s)
      Torii Takeshi
    • Journal Title

      Pacific J. Math

      Volume: 250 no. 2 Pages: 439-471

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] K(n)-localization of the K(n+1)-local E_{n+1}-Adams spectral sequences2011

    • Author(s)
      Torii Takeshi
    • Journal Title

      Pacific Journal of Mathematics

      Volume: 250 Issue: 2 Pages: 439-471

    • DOI

      10.2140/pjm.2011.250.439

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Comparison of Morava E-theories2010

    • Author(s)
      Torii Takeshi
    • Journal Title

      Math. Z

      Volume: 266 no. 4 Pages: 933-951

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] On E_∞-structure of the generalized Chern character2010

    • Author(s)
      Torii Takeshi
    • Journal Title

      Bull. Lond. Math. Soc

      Volume: 42 no. 4 Pages: 680-690

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] HKR characters, p-divisible groups and the generalized Chern character2010

    • Author(s)
      Tori i Takeshi
    • Journal Title

      Trans. Amer. Math. Soc

      Volume: 362 no. 11 Pages: 6159-6181

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] Comparison of Morava E-theories2010

    • Author(s)
      Torii Takeshi
    • Journal Title

      Mathematische Zeitschrift

      Volume: 266 Pages: 933-951

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On E_∞-structure of the generalized Chern character2010

    • Author(s)
      Torii Takeshi
    • Journal Title

      Bulletin of the London Mathematical Society

      Volume: 42 Pages: 680-690

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] HKR characters, p-divisible groups and the generalized Chern character2010

    • Author(s)
      Torii Takeshi
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 362 Pages: 6159-6181

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Presentation] On K(1)-local topological modular forms2012

    • Author(s)
      Tori i Takeshi
    • Organizer
      SGAD2012 Geometrical perspective of topological modular forms
    • Place of Presentation
      東京大学
    • Year and Date
      2012-11-15
    • Related Report
      2012 Final Research Report
  • [Presentation] 可換S代数のGalois拡大と加群の圏の埋め込みについて2012

    • Author(s)
      鳥居 猛
    • Organizer
      ホモトピー論シンポジウム
    • Place of Presentation
      山口大学
    • Year and Date
      2012-11-03
    • Related Report
      2012 Final Research Report
  • [Presentation] escent for structured modules2012

    • Author(s)
      鳥居 猛
    • Organizer
      (非)可換代数とトポロジー
    • Place of Presentation
      信州大学
    • Related Report
      2012 Final Research Report
  • [Presentation] Power operations and the generalized Chern character2011

    • Author(s)
      Torii Takeshi
    • Organizer
      第4回東アジア代数的トポロジー国際会議(EACAT4)
    • Place of Presentation
      東京大学
    • Year and Date
      2011-12-09
    • Related Report
      2012 Final Research Report
  • [Presentation] Power operations and the generalized Chern character2011

    • Author(s)
      Torii Takeshi
    • Organizer
      Structured Ring Spectra, Universitat Hamburg
    • Place of Presentation
      Germany
    • Year and Date
      2011-08-02
    • Related Report
      2012 Final Research Report
  • [Presentation] On the K(n)-local category2011

    • Author(s)
      Tori i Takeshi
    • Organizer
      低次元トポロジーと数論III
    • Place of Presentation
      九州大学西新プラザ
    • Year and Date
      2011-03-17
    • Related Report
      2012 Final Research Report
  • [Presentation] 可換S代数のGalois拡大と加群の圏の埋め込みについて

    • Author(s)
      鳥居 猛
    • Organizer
      ホモトピー論シンポジウム
    • Place of Presentation
      山口大学
    • Related Report
      2012 Annual Research Report
  • [Presentation] On K(1)-local topological modular forms

    • Author(s)
      鳥居 猛
    • Organizer
      SGAD2012 Geometrical perspective of topological modular forms
    • Place of Presentation
      東京大学
    • Related Report
      2012 Annual Research Report

URL: 

Published: 2010-08-23   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi