• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Knot invariants, modular forms and elliptic Dedekind sums

Research Project

Project/Area Number 22540096
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTsuda College

Principal Investigator

FUKUHARA SHINJI  津田塾大学, 学芸学部, 教授 (20011687)

Co-Investigator(Kenkyū-buntansha) MIYAZAWA Haruko  津田塾大学, 計数研, 研究員 (40266276)
Project Period (FY) 2010-04-01 – 2014-03-31
Project Status Completed (Fiscal Year 2013)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2013: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2012: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2011: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2010: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords位相幾何学 / 保型形式 / デデキント和 / 周期 / 不変量 / 結び目 / 周期多項式 / 局所変形 / 楕円デデキント和 / 結び目不変量 / L-関数
Research Abstract

The feature of our work is that we study Dedekind symbols in the relation with modular forms. Thus it is a significant step that we have constructed nice bases for the vector spaces of modular forms. We also obtained formulas to express powers of the theta function in terms of Eisenstein series. These formulas give us formulas for the numbers of representations of integers as sums of squares. These seem interesting from number theoretical and geometrical view points.

Report

(5 results)
  • 2013 Annual Research Report   Final Research Report ( PDF )
  • 2012 Annual Research Report
  • 2011 Annual Research Report
  • 2010 Annual Research Report
  • Research Products

    (11 results)

All 2013 2012 2010

All Journal Article (11 results) (of which Peer Reviewed: 11 results)

  • [Journal Article] Bases for S_k(¥Gamma_1(4)) and formulas for even powers of the Jacobi theta function2013

    • Author(s)
      Shinji Fukuhara, Yifan Yang
    • Journal Title

      Int. J. Number Thoery

      Volume: 9 Pages: 1973-1993

    • Related Report
      2013 Final Research Report
    • Peer Reviewed
  • [Journal Article] Bases for S_k(\Gamma_1(4)) and formulas for even powers of the Jacobi theta function2013

    • Author(s)
      Shinji Fukuhara, Yifan Yang
    • Journal Title

      Int. J. Number Theory

      Volume: 9 Issue: 08 Pages: 1973-1993

    • DOI

      10.1142/s1793042113500693

    • Related Report
      2013 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A basis for S_k(¥Gamma_0(4)) and representations of integers as sums of squares2012

    • Author(s)
      Shinji Fukuhara, Yifan Yang
    • Journal Title

      Ramanujan J.

      Volume: 28 Pages: 25-43

    • Related Report
      2013 Final Research Report
    • Peer Reviewed
  • [Journal Article] A basis for the space of modular forms2012

    • Author(s)
      Shinji Fukuhara
    • Journal Title

      Acta Arith.

      Volume: 151 Pages: 421-427

    • Related Report
      2013 Final Research Report
    • Peer Reviewed
  • [Journal Article] A basis for S_k(Gamma_0(4)) and representations of integers as sums of squares2012

    • Author(s)
      Shinji Fukuhara
    • Journal Title

      Ramanujan J.

      Volume: 28 Issue: 1 Pages: 25-43

    • DOI

      10.1007/s11139-011-9341-y

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A basis for the space of modular forms2012

    • Author(s)
      Shinji Fukuhara
    • Journal Title

      Acta Arithmetica

      Volume: 151 Pages: 421-427

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A basis for S_k(Gamma_0(4)) and representations of integers as sums of squares2012

    • Author(s)
      Shinji Fukuhara, Yifan Yang
    • Journal Title

      Ramanujan J

      Volume: 28 Pages: 25-43

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Twisted Hecke L-values and period polynomials2010

    • Author(s)
      Shinji Fukuhara, Yifan Yang
    • Journal Title

      J. Number Theory

      Volume: 130 Pages: 976-999

    • Related Report
      2013 Final Research Report
    • Peer Reviewed
  • [Journal Article] The elliptic Apostol-Dedekind sums generate odd Dedekind symbols with Laurent polynomial reciprocity laws2010

    • Author(s)
      Shinji Fukuhara
    • Journal Title

      Math. Ann.

      Volume: 346 Pages: 769-794

    • Related Report
      2013 Final Research Report
    • Peer Reviewed
  • [Journal Article] The elliptic Apostol-Dedekind sums generate odd Dedekind symbols with Laurent polynomial reciprocity laws2010

    • Author(s)
      Shinji Fukuhara
    • Journal Title

      Math.Ann.

      Volume: 346 Pages: 769-794

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Twisted Hecke L-values and period polynomials2010

    • Author(s)
      Shinji Fukuhara
    • Journal Title

      J.Number Theory

      Volume: 130 Pages: 976-999

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed

URL: 

Published: 2010-08-23   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi