Geometry of nonpositively curved spaces and the mathematical programming
Project/Area Number |
22654007
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Single-year Grants |
Research Field |
Geometry
|
Research Institution | Nagoya University |
Principal Investigator |
NAYATANI Shin 名古屋大学, 多元数理科学研究科, 教授 (70222180)
|
Co-Investigator(Renkei-kenkyūsha) |
IZEKI Hiroyadu 慶応義塾大学, 理工学部, 教授 (90244409)
KOBAYASHI Toshimasa 摂南大学, 理工学部, 講師 (30399125)
|
Project Period (FY) |
2010 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥2,000,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2011: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2010: ¥700,000 (Direct Cost: ¥700,000)
|
Keywords | 不変量δ / ビルディング / 数理計画法 / ユークリッド空間への埋め込み / 数値計算 / 埋め込みの変形 / 実対称行列の変形 / 超剛性定理 |
Research Abstract |
We studied toward determi ning the rigorous values of the invariant δof the tangent cones at vertices of the Euclidean building associated with the algebraic group PGL(3,Q_p), where p are primes, and observed the p=2 case in detail. The problem is formulated as that of deforming a certain real symmetric matrix properly, and this matrix has 9 unknown parameters (functions of 1 variable). We determined 6 parameters of these.
|
Report
(4 results)
Research Products
(26 results)