Project/Area Number |
22740043
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Geometry
|
Research Institution | Tokyo Denki University |
Principal Investigator |
IRIYEH Hiroshi 東京電機大学, 未来科学部, 准教授 (30385489)
|
Project Period (FY) |
2010 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2011: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2010: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | シンプレクティック多様体 / Floerホモロジー / エルミート対称空間 / 実形 / ラグランジュ部分多様体 / ハミルトン体積最小性 / Arnold-Givental不等式 / 対蹠集合 |
Research Abstract |
The Arnold-Givental conjecture states that the intersection number of Lagrangian submanifold L, which is the fixed point set of an anti-symplectic involution of a symplectic manifold M, and its imageΦ(L) by Hamiltonian diffeomorphismΦof M is greater than or equal to the sum of Z_2-Betti numbers of L. We tried to extend the conjecture to the case of a pair of Lagrangian submanifolds. As a result, we could formulate the generalized Arnold-Givental conjecture and prove it for the case of an irreducible Hermitian symmetric space M of compact type.
|