Project/Area Number |
22K14193
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Kyushu University |
Principal Investigator |
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2023: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2022: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | ケルビンプローブフォース顕微鏡 / 接触線 / 帯電 / 表面電荷密度 / 三相界線 / グラフェン / 相界面 / 固液界面 / KPFM |
Outline of Research at the Start |
固体-液体-気体の異なる三相が重なる三相界線の理解は今でも不十分なままで、特に三相界線を固定するピニング現象は未だ完全な理解には程遠い。 本研究では、架橋グラフェン液体セルという新しい実験用デバイスを開発することで、今まで不可能であったケルビンプローブフォース顕微鏡(KPFM)による固液界面および三相界線近傍の電荷密度マッピングの実現を目指す。これにより、実験的裏付けのある三相界線の新たなフォースバランスモデルの確立に向けた最初の一歩を踏み出す。
|
Outline of Final Research Achievements |
To understand the physics at the solid-liquid-gas contact line, it is essential to consider the electric charge at the phase interfaces. This study aims to gain insights into nanoscale interfacial phenomena using Kelvin Probe Force Microscopy (KPFM) that can measure surface potential as a main technology. Our results showed that there exists an area extending approximately 100 microns that charges up to -1.0V near a droplet. It was indicated that a physical mechanism of the charging was different from a well-known solid-liquid contact charging. We have also made progress in developing a novel liquid cell that allows simultaneous KPFM measurements across solid-gas and solid-liquid interfaces. Besides, studies using TEM and AFM have provided numerous insights into the physics of flow phenomena inside nanomaterials and porous structures.
|
Academic Significance and Societal Importance of the Research Achievements |
接触線近傍における特異な帯電を計測したのは世界初であり、接触線におけるフォースバランスといった熱・流体工学の長年の課題に新たな知見を提供するものである。また、水と固体面の相互作用から電力を直接抽出するブルーエネルギーの分野では接触線付近の固体面の帯電が特に重要であると予想されているが実測した例はなく、本研究結果が与えるインパクトは大きい。新規液体セルの構築が完了すればより定量的な知見を提供でき、その波及範囲は熱流体工学の垣根を越えてナノ流体工学・金属腐食工学・電気化学・界面科学など極めて広い。
|