Project/Area Number |
22K14293
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21050:Electric and electronic materials-related
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
Bulgarevich Kirill 国立研究開発法人理化学研究所, 創発物性科学研究センター, 特別研究員 (60880268)
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
|
Keywords | 有機半導体 / 有機トランジスタ / 単結晶 / 薄膜 / 多単結晶膜 / 大面積 / 間接昇華法 / 間接昇華 / 単結晶有機半導体 / 大気圧下蒸着 / 大気圧蒸着 |
Outline of Research at the Start |
The proposed research aims to develop a simple, scalable, and vacuum and solution free method for growth and transfer of organic semiconductor single crystals (SCs) for applications in high-performance devices based on organic field-effect transistors (OFETs). A method is proposed to cover entire substrate surface with SCs as Multi-SC films. Such films may have similar applications in OFET-based devices as solution grown thin-films, but can show better performance. Thus, practical applications will be offered to organic semiconductor SCs which are mainly used for studying intrinsic properties.
|
Outline of Final Research Achievements |
We developed a novel crystal growth technique named "indirect sublimation", and successfully formed organic semiconductor single-crystals on large-area without the use of vacuum or solvents. These numerous freestanding single-crystals were transferred onto device substrates through a simple press-transfer and rubbing process, creating a so-called "multi-single-crystal (MSC)" film, where small crystals overlap to cover large areas. We confirmed that organic field-effect transistors (OFETs) using this MSC film as the active layer perform similarly to single-crystal devices. By combining such OFETs, we successfully fabricated pseudo-CMOS devices that exhibit inverter characteristics similar to CMOS devices. Furthermore, using our unique crystal structure simulation algorithm, we successfully developed a novel ultra-high mobility organic semiconductor material, which also has potential for MSC film applications.
|
Academic Significance and Societal Importance of the Research Achievements |
新たに開発された「間接昇華法」および「多単結晶膜」形成は真空や溶媒を用いずに有機半導体の大面積な結晶性薄膜を形成する手法である。特に我々が最近報告した有機半導体MT-ピレンは多単結晶膜トランジスタで(>15 cm2 V-1 s-1)の非常に高い移動度を示し、この技術により環境への影響を抑えた高性能な有機デバイスの実現が期待される。さらに、我々が独自で開発した結晶構造シミュレーションアルゴリズムを使用することでMT-ピレンと同等な移動度を示す新規材料が開発された。この手法は多単結晶膜応用を念頭に置いた溶解性にとらわれない材料設計と構造シミュレーションによる効率的な高移動度新規材料開発につながる。
|