Project/Area Number |
22K18901
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 26:Materials engineering and related fields
|
Research Institution | Toyohashi University of Technology |
Principal Investigator |
Muto Hiroyuki 豊橋技術科学大学, 工学(系)研究科(研究院), 教授 (20293756)
|
Co-Investigator(Kenkyū-buntansha) |
TAN WAIKIAN 豊橋技術科学大学, 総合教育院, 准教授 (10747695)
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2022: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
|
Keywords | 複合材料 / 機能性材料 / 粉末冶金 / 複合顆粒 / 熱伝導性 / 電気伝導性 / 導電性セラミックス / コアシェル複合顆粒 / 顆粒化 / 巨視構造制御 / 粉末冶金法 / カーボンナノチューブ / 複合化 / 粒子設計 |
Outline of Research at the Start |
粉末をプレス成形して、焼結することでバルク体を製造する粉末冶金技術は産業界では汎用的に用いられモノづくりの基本となっている。さらに、マトリックスに添加物を分散させ複合化させることで、更なる特性向上が見込まれる(複合材料)。しかしながら、従来プロセスでは、マトリックス粒子と添加粒子を「均一に」添加物が分散した微構造しか得ることができず、電気伝達のための経路(パーコレーション構造)を効率よく連続相を導入することができない。本研究では、より少ない添加量(パーコレーション閾値の低減)で、確実なパーコレーション構造をデザインすることができる革新的な粉末冶金プロセスの確立に挑戦する。
|
Outline of Final Research Achievements |
To demonstrate the feasibility of electrostatic particle assembly in microstructural control of composite granules, core-shell composite granules consisting of a H-BN embedded alumina (Al2O3) shell with a core of Al2O3 were fabricated. The cross-sectional images of a spark plasma sintered artifact obtained using the hBN-incorporated shell-layer Al2O3 composite granules are shown a mesh-like interconnected network. Interestingly, the heat conductivity of the sintered artifacts obtained using hBN-incorporated shell-layer Al2O3 granules was higher than those obtained when hBN was homogeneously distribution within the Al2O3 granules (same amount of hBN. These findings indicate that electrostatic particle assembly can play an important role in the development of smart processes for advanced functional materials fabrication using powder metallurgy methods with good potential for large scale manufacturing.
|
Academic Significance and Societal Importance of the Research Achievements |
複合材料を作製する際に、添加物として種々のナノ物質が用いられる。しかしながら、通常の粉末冶金法に倣い機械的な混合により原料粉末を混合すると、目的とした微構造の複合材料を得ることができない。このために、本来、発現が期待される性能を十分に備えた材料開発が行えていないのが現状である。本研究成果は、これらの問題を解決することができるユニークな材料作製プロセスであり、今度、材料に求められる高度な要求に応えることができると期待される。
|