Statistical Inference of Stochastic Copulas and Their Application to Finance
Project/Area Number |
23530250
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Economic statistics
|
Research Institution | Hitotsubashi University |
Principal Investigator |
|
Project Period (FY) |
2011 – 2013
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2013: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2012: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2011: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 確率的裾依存性コピュラ / 確率的ヴァインコピュラ / 粒子フィルター法 / CVaR最小化 / レバレッジ付き確率ボラティリティ / テールリスク・パリティ / 動的条件付きコピュラ / ボラティリティ・パズル / 多変量ファクター確率ボラティリティ / MCMC |
Research Abstract |
We find out that the particle filtering technique is an effective method for statistical inference of stochastic copulas with time-varying dependence structure. As financial applications we have developed copula-based stochastic volatility(SV) model, multi-variate SV model,stochastic vein copula model, and so on. Furthermore, we have proposed new types of portfolio optimization based on the tail-risk parity/budgeting approach.
|
Report
(4 results)
Research Products
(28 results)