Flows and foliations subordinate to nonintegrable plane fields
Project/Area Number |
23540071
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Chiba University |
Principal Investigator |
INABA Takashi 千葉大学, 理学(系)研究科(研究院), 教授 (40125901)
|
Co-Investigator(Renkei-kenkyūsha) |
TSUBOI Takashi 東京大学, 大学院・数理科学研究科, 教授 (40114566)
NAKAYAMA Hiromichi 青山学院大学, 理工学部, 教授 (30227970)
KUGA Ken'ichi 千葉大学, 大学院・理学研究科, 教授 (30186374)
SUGIYAMA Ken-ichi 千葉大学, 大学院・理学研究科, 教授 (90206441)
|
Project Period (FY) |
2011 – 2013
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2011: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 微分トポロジー / 積分不可能平面場 / エントロピー / Reeb流 / 初期条件に関する鋭敏依存性 |
Research Abstract |
1. Usual entropy always vanishes for nonintegrable plane fields (Zung 2011). We proposed a new definition of entropy which is involved in differentiability. 2. We introduced the concept of sensitive dependence on initial conditions (SDIC) for nonintegrable plane fields and constructed a nontrivial candidate for SDIC. 3. Given a contact manifold M and a torus T with a nonsingular flow, we constructed a contact form on M which defines the given contact structure and admits T as an invariant set of the associated Reeb flow.
|
Report
(4 results)
Research Products
(18 results)