Study of Hopf spaces by using higher order cohomology operations
Project/Area Number |
23540093
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Kochi University |
Principal Investigator |
HEMMI Yutaka 高知大学, 教育研究部自然科学系, 教授 (70181477)
|
Co-Investigator(Kenkyū-buntansha) |
KAWAMOTO Yusuke 防衛大学校, 総合教育学群, 准教授 (10531759)
MORISUGI Kaoru 和歌山大学, 教育学部, 特任教授 (00031807)
YAMAGUCHI Toshihiro 高知大学, 教育研究部自然科学系, 教授 (90346700)
|
Project Period (FY) |
2011 – 2013
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2011: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 非安定高位コホモロジー作用素 / ホップ空間 / 高位ホモトピー結合性 / Long Toda積 / cyclohedron / 高位ホモトピー可換性 / コホモロジー作用素 / 有限位相空間 / 有限単体的複体 / 配置空間 / 実射影空間 / 安定拡張可能 / 有理ホモトピー / Gottlieb群 |
Research Abstract |
It is known that the non trivial p-component of the homotopy group of 2n+1 dimensional sphere occurs in dimension 2n+2i(p-1)-1 for n<i<p. The generators for the case of n=1 is given by the composition of the Toda's alpha elements, but for n>1 we showed that they are given by the Toda bracket or higher Toda brackets. We studied higher cohomology operatons detecting these generators. For 3-sphere we showed that it is the secoandary operation which has been useful in studying higher homotopy associativity of Hopf spaces
|
Report
(4 results)
Research Products
(34 results)