Construction of extender for continuous maps
Project/Area Number |
23540100
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Takasaki City University of Economics |
Principal Investigator |
|
Project Period (FY) |
2011-04-28 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2013: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2012: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2011: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 拡張問題 / 内挿理論 / 拡張作用素 / 半連続写像 / 順序位相ベクトル空間 / 内挿定理 / 半連続関数 / way-below / 半順序集合 / 束 / 順序線形位相空間 / 順序ベクトル空間 / 内点 / 位相リース空間 / 単調可算パラコンパクト / 位相ベクトル束 / 挿入定理 |
Outline of Final Research Achievements |
For extension problems of continuous maps, assignment for maps and insertion theory are studied. Monotone countable paracompactness is characterized by using assignment for maps with values in ordered topological vector spaces. Moreover, generalized Dowker-Katetov insertion theorems are also given for maps with the following ranges: (i) ordered topological vector spaces with positive interior points, (ii) bi-bounded complete and bicontinuous posets.
|
Report
(7 results)
Research Products
(8 results)