Various constants and norm inequalities in Banach spaces and its applications
Project/Area Number |
23540189
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Niigata University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
KATO Mikio 信州大学, 工学部, 教授 (50090551)
HATORI Osamu 新潟大学, 自然科学系, 教授 (70156363)
MITANI Ken-ichi 岡山県立大学, 情報工学部, 准教授 (00468969)
WATANABE Keiichi 新潟大学, 自然科学系, 准教授 (50210894)
|
Project Period (FY) |
2011 – 2013
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2013: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2012: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2011: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | バナッハ空間 / ノルム不等式 / James 定数 / von Neumann-Jordan 定数 / von Neumann-Jordan定数 / James定数 / Dunkl-Williams不等式 / 三角不等式 / ノルム空間 / Dunkl-Williams定数 / skew定数 |
Research Abstract |
In this project, we mainly presented the following results. (1) We presented how to calculate several geometrical constants of Banach spaces, in particular, two dimensiona spaces, for example, von Neumann-Jordan constant, James constant and so on.(2) We studied the orthogonal structure of finite dimensional Banach spaces using the notion of Birkoff orthogonality.(3) We proved the refinement and generalization of trianglar inequalities in Banach spaces and considered its applications.
|
Report
(4 results)
Research Products
(207 results)