• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Image reconstruction with the adaptively learned image model

Research Project

Project/Area Number 23700194
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Perception information processing/Intelligent robotics
Research InstitutionTokyo Institute of Technology

Principal Investigator

TANAKA Masayuki  東京工業大学, 理工学研究科, 准教授 (60401543)

Project Period (FY) 2011-04-28 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2013: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2012: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2011: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords画像処理 / アルゴリズム拡張 / 国際研究者交流 / なし
Outline of Final Research Achievements

In this project, the image model which focuses on the image patch is proposed. In the existing algorithm, the model is learned with a training dataset. However, if the statistical properties of the training dataset is different from a target scene, an algorithm using that model cannot reach the good performance. In the proposed algorithm, the model is adaptively learned with the input image. The proposed algorithm is applied to the image denoising and the image super-resolution. The experimental results demonstrate that the proposed algorithm improves the performance of the image denoising and the image super-resolution.

Report

(5 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Research-status Report
  • 2012 Research-status Report
  • 2011 Research-status Report
  • Research Products

    (7 results)

All 2015 2014 2013 2012

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (6 results) (of which Invited: 1 results)

  • [Journal Article] ノンローカルPCAに基づく画像デノイジング2013

    • Author(s)
      山内啓大朗, 田中正行, 奥富正敏
    • Journal Title

      電子情報通信学会論文誌D

      Volume: J96-D Pages: 389-398

    • NAID

      110009593008

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Presentation] 自然画像と雑音の統計的性質に基づく画像処理2015

    • Author(s)
      田中正行
    • Organizer
      視覚情報学講演会
    • Place of Presentation
      大阪
    • Year and Date
      2015-01-13
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] Signal Dependent Noise Removal from a Single Image2014

    • Author(s)
      Xinhao Liu, Masayuki Tanaka, Masatoshi Okutomi
    • Organizer
      IEEE International Conference on Image Processing(ICIP2014)
    • Place of Presentation
      フランス パリ
    • Year and Date
      2014-10-27 – 2014-10-30
    • Related Report
      2014 Annual Research Report
  • [Presentation] A classification-and-reconstruction approach for a single image super-resolution by a sparse representation2014

    • Author(s)
      YingYing Fan, Masayuki Tanaka and Masatoshi Okutomi
    • Organizer
      IS&T/SPIE Electronic Imaging
    • Place of Presentation
      サンフランシスコ
    • Related Report
      2013 Research-status Report
  • [Presentation] Across-resolution adaptive dictionary learning for single-image super-resolution2013

    • Author(s)
      Masayuki Tanaka, Ayumu Sakurai and Masatoshi Okutom
    • Organizer
      IS&T/SPIE Electronic Imaging
    • Place of Presentation
      サンフランシスコ,アメリカ
    • Related Report
      2012 Research-status Report
  • [Presentation] 一枚超解像のための自己相似性に基づく適応的基底学習2012

    • Author(s)
      櫻井歩, 田中正行, 奥富正敏
    • Organizer
      第18回画像センシングシンポジウム(SSII2012)講演論文集
    • Place of Presentation
      パシフィコ横浜,横浜
    • Related Report
      2012 Research-status Report
  • [Presentation] 自己相似性に基づく適応的基底学習による一枚超解像2012

    • Author(s)
      櫻井歩, 田中正行, 奥富正敏
    • Organizer
      第15回画像の認識・理解シンポジウム(MIRU2012)論文集
    • Place of Presentation
      福岡国際会議場,福岡
    • Related Report
      2012 Research-status Report

URL: 

Published: 2011-08-05   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi