• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Gevrey asymptotic theory for first-order linear and semi-linear partial differential equations of nilpotent type

Research Project

Project/Area Number 23740114
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionMeijo University

Principal Investigator

HIBINO Masaki  名城大学, 理工学部, 准教授 (10441461)

Project Period (FY) 2011 – 2013
Project Status Completed (Fiscal Year 2013)
Budget Amount *help
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2013: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2012: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2011: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords関数方程式論 / 複素解析 / 発散級数 / 総和可能性 / 解析接続
Research Abstract

We studied two complex dimensional singular first-order linear partial differential equations of nilpotent type. Our main purpose was to give conditions for equations under which the divergent power series solution is Borel summable. As a consequence, we could conjecture conditions, in forms of global conditions (analytic continuation property, growth conditions or decreasing conditions) for coefficients of equations. Moreover, we could accomplish the proof of conjecture for some special, but have not been treated previously, equations.

Report

(4 results)
  • 2013 Annual Research Report   Final Research Report ( PDF )
  • 2012 Research-status Report
  • 2011 Research-status Report
  • Research Products

    (7 results)

All 2013 2012 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (6 results)

  • [Journal Article] On the summability of formal solutions for singular first-order linear partial differential equations2012

    • Author(s)
      Masaki HIBINO
    • Journal Title

      Research Reports of the Faculty of Science and Technology (Meijo University)

      Volume: 52 Pages: 1-6

    • NAID

      40019824758

    • Related Report
      2013 Final Research Report
    • Peer Reviewed
  • [Presentation] On the summability of divergent power series solutions of certain first-order linear PDEs2013

    • Author(s)
      日比野 正樹
    • Organizer
      Formal and Analytic Solutions of Differential, Difference and Discrete Equations
    • Place of Presentation
      Mathematical Research and Conference Center, Bedlewo, Poland
    • Year and Date
      2013-08-26
    • Related Report
      2013 Final Research Report
  • [Presentation] 或る1階線型偏微分方程式に対する発散羃級数解の総和可能性について2013

    • Author(s)
      日比野 正樹
    • Organizer
      2013日本数学会年会
    • Place of Presentation
      京都大学
    • Year and Date
      2013-03-20
    • Related Report
      2013 Final Research Report
  • [Presentation] 1階偏微分方程式に対するCauchy-Kowalevsky の定理の不動点定理による証明2012

    • Author(s)
      日比野 正樹
    • Organizer
      2012日本数学会年会
    • Place of Presentation
      東京理科大学
    • Year and Date
      2012-03-26
    • Related Report
      2013 Final Research Report
  • [Presentation] On the summability of divergent power series solutions for certain first-order linear PDEs

    • Author(s)
      日比野正樹
    • Organizer
      Formal and Analytic Solutions of Differential, Difference and Discrete Equations
    • Place of Presentation
      Mathematical Research and Conference Center, Bedlewo, Poland
    • Related Report
      2013 Annual Research Report
  • [Presentation] 或る1階線型偏微分方程式に対する発散羃級数解の総和可能性について

    • Author(s)
      日比野正樹
    • Organizer
      2013日本数学会年会
    • Place of Presentation
      京都大学
    • Related Report
      2012 Research-status Report
  • [Presentation] 1階偏微分方程式に対するCauchy-Kowalevskyの定理の不動点定理による証明

    • Author(s)
      日比野正樹
    • Organizer
      2012日本数学会年会
    • Place of Presentation
      東京理科大学
    • Related Report
      2011 Research-status Report

URL: 

Published: 2011-08-05   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi