Toward the resolution of problems on algebraic varieties in positive characteristic
Project/Area Number |
24540051
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Ito Hiroyuki 東京理科大学, 理工学部, 教授 (60232469)
|
Co-Investigator(Renkei-kenkyūsha) |
HIROKADO MASAYUKI 広島市立大学, 大学院情報科学研究科, 講師 (40316138)
SAITOU NATSUO 広島市立大学, 大学院情報科学研究科, 講師 (70382372)
|
Project Period (FY) |
2012-04-01 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2014: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2013: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2012: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 代数幾何学 / 特異点 / 正標数 / 楕円曲面 / K3曲面 / 群スキーム / 疑似乱数生成 / 非ケーラー幾何 / 代数多様体 / 導分 / Calabi-Yau多様体 / 正標数特異点 / 野生的群作用 / Frobenius写像 / Artin-Schreier拡大 / Enriques曲面 |
Outline of Final Research Achievements |
1) We classified elliptic K3 surfaces whose Mordell-Weil group have p-torsion. As a corollary, we found the strong relationship between the moduli space of such surfaces and deformation spaces of rational double points. 2) We solved the problems on the dual graph of wild quotient singularities. 3) By introducing the notion of pseudo-derivations, we consider quotient singularities not only by finite groups but by group schemes, which enable the unified treatment of various quotient singularities in positive characteristic. 4) We continued the evaluation of AST pseudo-random number generators. We also collect and consider the phenomena which give the evidences of the analogy between non-Kaeler geometry and positive characteristic algebraic geometry.
|
Report
(5 results)
Research Products
(16 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] 正標数の商特異点について
Author(s)
伊藤浩行
Organizer
第5回代数曲面ワークショップ at 秋葉原
Place of Presentation
首都大学東京、秋葉原サテライトキャンパス
Related Report
Invited
-
-
-