• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric structures related to neutral metrics

Research Project

Project/Area Number 24540062
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionMiyagi University of Education

Principal Investigator

Kamada Hiroyuki  宮城教育大学, 教育学部, 教授 (00249799)

Co-Investigator(Renkei-kenkyūsha) AIHARA YOSHIHIRO  福島大学, 人間発達文化学類, 教授 (60175718)
NAYATANI SHIN  名古屋大学, 大学院多元数理科学研究科, 教授 (70222180)
NAKAGAWA YASUHIRO  佐賀大学, 大学院工学系研究科, 教授 (90250662)
IZEKI HIROYASU  慶應義塾大学, 理工学部, 教授 (90244409)
NAKATA FUMINORI  福島大学, 人間発達文化学類, 准教授 (80467034)
Project Period (FY) 2012-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2014: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsニュートラル計量 / ニュートラル構造 / パラ超複素構造 / 四元数CR構造 / 強積分可能性 / ツイスター空間 / ツイスター概CR構造 / 四元数CR構造
Outline of Final Research Achievements

A pseudo-Riemannian metric on a manifold is called a neutral metric if it has neutral signature, and a family of local neutral metrics that conicide, except for multiplication by -1, on the overlaps, is called a neutral structure. Davidov et al. obtained examples of compact complex surfaces with a quaternion-like structure (parahypercomplex structure) that admit compatible neutral structures, but never admit any compatible neutral metric. Then we show that their example of a hyperelliptic surface can be deformed to a compatible neutral structure, which is not locally conformal parahyperkahler. Also, we introduce the notion of strong integrability for a quaternionic CR manifold (of dimension greater than 7), and show that, under ultra pseudoconvexity and strong integrability, a partially integrable almost CR structure (called the twistor almost CR structure) is defined naturally on its twistor space.

Report

(5 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (5 results)

All 2015 2014 2013

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Book (2 results)

  • [Journal Article] Quaternionic CR geometry2013

    • Author(s)
      Hiroyuki Kamada and Shin Nayatani
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: 印刷中(in press)

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Presentation] Quaternionic CR structure: a geometric structure modeled on a real hypersurface in a quaternionic manifold2015

    • Author(s)
      Hiroyuki Kamada
    • Organizer
      Workshop on almost Hermitian and contact geometry
    • Place of Presentation
      Castle Bedlewo, Bedlewo, Poland
    • Year and Date
      2015-10-18
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Geometric structures modeled on a real hypersurface in a quaternionic manifold2014

    • Author(s)
      Hiroyuki Kamada
    • Organizer
      Fourth International Colloquim on Differential Geometry and its Related Fields
    • Place of Presentation
      St. Cyril and St. Methodius University of Veliko Tarnovo (Veliko Tarnovo, Bulgaria)
    • Year and Date
      2014-09-08 – 2014-09-11
    • Related Report
      2014 Research-status Report
  • [Book] Current Developments in Differential Geometry and its Related Fields (Almost CR Structure on the Twistor Space of a Quaternionic CR Manifold)2015

    • Author(s)
      Hiroyuki Kamada and Shin Nayatani; A. Arvanitoyeorgos, Y. Sakane and M. Statha; T. Adachi; F. Nakata; N. Ando; N.A. Ivanov; M. Ivanova and H. Manev; N. Ejiri and T. Shoda; Y. Tursun; H. Hashimoto and K. Suzuki; G. Nakova; H. Matsuzoe; M. Ohashi; Q. Shi; M.J. Hristov
    • Total Pages
      241
    • Publisher
      World Scientific
    • Related Report
      2015 Annual Research Report
  • [Book] Current Developments in Differential Geometry and its Related Fields (Almost CR structure on the twistor space of a quaternionic CR manifold)2015

    • Author(s)
      Hiroyuki Kamada and Shin Nayatani 他
    • Total Pages
      234
    • Publisher
      World Scientific
    • Related Report
      2014 Research-status Report

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi