Geometric structures related to neutral metrics
Project/Area Number |
24540062
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Miyagi University of Education |
Principal Investigator |
|
Co-Investigator(Renkei-kenkyūsha) |
AIHARA YOSHIHIRO 福島大学, 人間発達文化学類, 教授 (60175718)
NAYATANI SHIN 名古屋大学, 大学院多元数理科学研究科, 教授 (70222180)
NAKAGAWA YASUHIRO 佐賀大学, 大学院工学系研究科, 教授 (90250662)
IZEKI HIROYASU 慶應義塾大学, 理工学部, 教授 (90244409)
NAKATA FUMINORI 福島大学, 人間発達文化学類, 准教授 (80467034)
|
Project Period (FY) |
2012-04-01 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2014: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | ニュートラル計量 / ニュートラル構造 / パラ超複素構造 / 四元数CR構造 / 強積分可能性 / ツイスター空間 / ツイスター概CR構造 / 四元数CR構造 |
Outline of Final Research Achievements |
A pseudo-Riemannian metric on a manifold is called a neutral metric if it has neutral signature, and a family of local neutral metrics that conicide, except for multiplication by -1, on the overlaps, is called a neutral structure. Davidov et al. obtained examples of compact complex surfaces with a quaternion-like structure (parahypercomplex structure) that admit compatible neutral structures, but never admit any compatible neutral metric. Then we show that their example of a hyperelliptic surface can be deformed to a compatible neutral structure, which is not locally conformal parahyperkahler. Also, we introduce the notion of strong integrability for a quaternionic CR manifold (of dimension greater than 7), and show that, under ultra pseudoconvexity and strong integrability, a partially integrable almost CR structure (called the twistor almost CR structure) is defined naturally on its twistor space.
|
Report
(5 results)
Research Products
(5 results)