• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Riemannian submanifolds and geometry of Laplace operator

Research Project

Project/Area Number 24540073
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionShizuoka University

Principal Investigator

Kumura Hironori  静岡大学, 理学部, 准教授 (30283336)

Project Period (FY) 2012-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2014: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2013: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2012: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords部分多様体 / ラプラス作用素 / 平均曲率 / submersion / ラプラス-ベルトラミ作用素 / 固有値 / ラプラシアン / 等長的はめ込み
Outline of Final Research Achievements

Riemannian submanifolds M may exit from a domain of target manifold, if the norm of the curvature of M and the second fundamental form are sufficiently small compared to the target manifolds. In this respect, I considered the case the target manifolds are Riemannian submersion and extended the results of previous paper. I calculate exit radii from cylinderorical domain using the geometric quantity explicitly. I also consider the relationship possibility of immersion and the eigenvalue of the Laplacian.

Report

(5 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (2 results)

All 2013 2012

All Journal Article (2 results) (of which Peer Reviewed: 2 results)

  • [Journal Article] Limiting absorption principle on manifolds having ends with various measure growth rate limits2013

    • Author(s)
      Hironori Kumura
    • Journal Title

      Proceedings of the London Mathematical Society

      Volume: 108 Issue: 3 Pages: 517-548

    • DOI

      10.1112/plms/pds057

    • Related Report
      2013 Research-status Report 2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] Geometric relative Hardy inequalities and the discrete spectrum of Schrödinger operators on manifolds2012

    • Author(s)
      Kazuo Akutagawa and Hironori Kumura
    • Journal Title

      Calculus of Variations and Partial Differential Equations

      Volume: 未定 Issue: 1-2 Pages: 67-88

    • DOI

      10.1007/s00526-012-0542-z

    • Related Report
      2012 Research-status Report
    • Peer Reviewed

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi