• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Topological structures for semiclosed operators using de Branges space theory

Research Project

Project/Area Number 24540160
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionIbaraki University

Principal Investigator

HIRASAWA GO  茨城大学, 工学部, 教授 (10434002)

Co-Investigator(Kenkyū-buntansha) OKA Hirokazu  茨城大学, 工学部, 教授 (90257254)
Project Period (FY) 2012-04-01 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2014: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2013: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2012: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords半閉作用素 / DeBranges空間 / 準線形発展方程式 / 強解 / 準線型発展方程式 / カラテオドリ条件
Outline of Final Research Achievements

We study the theory of semiclosed operators in a Hilbert space from the topological view point. We showed that the set of selfadjoint operators is relatively open in the set of semiclosed symmetric operators. From this result, a radius of a ball of a selfadjoint operator is considered naturally, and we give the value of a radius of a ball of Laplacian. This means that semiclosed symmetric operators which is in a ball of Laplacian having the radius as above automatically selfadjoint. As an application, we show the selfadjointness of Schrodinger operators with Kato-Rellich potential from the topological view point.

Report

(4 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (6 results)

All 2013 2012

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (4 results)

  • [Journal Article] A characterization of the stability of a system of the Banach space valued differential equations2013

    • Author(s)
      T. Miura, G. Hirasawa S.-E. Takahasi and T. Hayata
    • Journal Title

      Math. Inequal. Appl.

      Volume: 16 Issue: 3 Pages: 717-728

    • DOI

      10.7153/mia-16-54

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] Isometries and Maps Compatible with Inverted Jordan Triple Products on Groups,2012

    • Author(s)
      O.Hatori,G.Hirasawa,T.Miura,L.Molnar
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: 35 Issue: 2 Pages: 385-410

    • DOI

      10.3836/tjm/1358951327

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Presentation] 代数的次元と不変部分空間について2013

    • Author(s)
      平澤 剛
    • Organizer
      富山解析セミナー 2013
    • Place of Presentation
      富山大学理学部
    • Related Report
      2013 Research-status Report
  • [Presentation] Lowner 関数による値域のある性質について2013

    • Author(s)
      平澤 剛
    • Organizer
      関数環研究集会
    • Place of Presentation
      クロスパルにいがた
    • Related Report
      2013 Research-status Report
  • [Presentation] 半閉部分空間から閉部分空間へ2013

    • Author(s)
      平澤剛
    • Organizer
      解析学セミナー
    • Place of Presentation
      新潟大学理学部
    • Related Report
      2012 Research-status Report
  • [Presentation] ラプラシアンの摂動と距離について2012

    • Author(s)
      平澤剛
    • Organizer
      富山解析セミナー
    • Place of Presentation
      富山大学理学部
    • Related Report
      2012 Research-status Report

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi