• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The development of the wavelet theory for partial differential equations and its numerical analysis application

Research Project

Project/Area Number 24540161
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionUniversity of Tsukuba

Principal Investigator

Kinoshita Tamotu  筑波大学, 数理物質系, 准教授 (90301077)

Co-Investigator(Kenkyū-buntansha) KAJITANI Kunihiko  筑波大学, 名誉教授 (00026262)
ISHIWATA Satoshi  山形大学, 理学部, 准教授 (70375393)
KUBO Takayuki  筑波大学, 数理物質系, 講師 (90424811)
Co-Investigator(Renkei-kenkyūsha) ASHINO Ryuichi  大阪教育大学, 教育学部, 教授 (80249490)
Project Period (FY) 2012-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2014: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2013: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2012: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords関数方程式論 / ウェーブレット / 数値解析 / スプライン関数
Outline of Final Research Achievements

As for the wavelet theory, we could find some practical wavelets and construct an interesting counter example concerned with the unconditional convergence of wavelet expansions. As for the partial differential equations theory, we succeeded to get the very useful representation formula of the solutions to the Cauchy problem for the second order wave type equations. These research results are sufficiently satisfactory as an each result in the wavelet theory and the partial differential equations theory. Combining the partial differential equations theory with the wavelet theory, we also obtained a result concerned with the relations between the wellposedness and the oscillations of the coefficients by visualizing with the wavelet transform. This seems to be still scope for improvement and will become the research subject in the future.

Report

(5 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (16 results)

All 2016 2015 2014 2013 2012

All Journal Article (7 results) (of which Peer Reviewed: 7 results,  Acknowledgement Compliant: 3 results,  Open Access: 2 results) Presentation (9 results) (of which Invited: 4 results)

  • [Journal Article] On the unconditional convergence of wavelet expansions for continuous functions2016

    • Author(s)
      N. Fukuda, T. Kinoshita, T. Suzuki
    • Journal Title

      International Journal of Wavelets, Multiresolution and Information Processing

      Volume: 14 Issue: 01 Pages: 1-18

    • DOI

      10.1142/s0219691316500077

    • NAID

      120007129600

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] On the construction of band-limited wavelets with the Prouhet–Thue–Morse sequence2015

    • Author(s)
      N. Fukuda, T. Kinoshita, and I. Uehara
    • Journal Title

      Applied and Computational Harmonic Analysis

      Volume: 38 Issue: 3 Pages: 385-398

    • DOI

      10.1016/j.acha.2014.05.003

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] On second order weakly hyperbolic equations with oscillating coefficients2015

    • Author(s)
      T. Kinoshita
    • Journal Title

      Differential and Integral Equations

      Volume: 28 Pages: 581-600

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] On the Wavelets Having Gevrey Regularities and Subexponential Decays2013

    • Author(s)
      N. Fukuda, T. Kinoshita, I. Uehara
    • Journal Title

      Mathematische Nachrichten

      Volume: first published online Issue: 5-6 Pages: 546-560

    • DOI

      10.1002/mana.201300033

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the Galerkin-Wavelet method for Higher order differential equations2013

    • Author(s)
      N. Fukuda, T. Kinoshita, T. Kubo
    • Journal Title

      Bulletin of the Korean Mathematical Society

      Volume: Vol. 50(3) Issue: 3 Pages: 963-982

    • DOI

      10.4134/bkms.2013.50.3.963

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the construction of new families of wavelets2012

    • Author(s)
      N. Fukuda and T. Kinoshita
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: vol 29 Issue: 1 Pages: 63-82

    • DOI

      10.1007/s13160-011-0050-0

    • NAID

      10030213927

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] On non-symmetric orthogonal spline wavelets2012

    • Author(s)
      N. Fukuda and T. Kinoshita
    • Journal Title

      Southeast Asian Bulletin of Mathematics

      Volume: 36 Pages: 319-342

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Presentation] GelFand-Shilov空間におけるウェーブレット変換について2016

    • Author(s)
      木下保
    • Organizer
      日本応用数理学会
    • Place of Presentation
      神戸学院大学(兵庫県神戸市)
    • Year and Date
      2016-03-05
    • Related Report
      2015 Annual Research Report
    • Invited
  • [Presentation] 離散ウェーブレット展開の無条件収束性について1、22015

    • Author(s)
      木下保
    • Organizer
      武蔵野偏微分方程式研究集会
    • Place of Presentation
      日本医科大学(東京都武蔵野市)
    • Year and Date
      2015-10-10
    • Related Report
      2015 Annual Research Report
  • [Presentation] 連続関数のウェーブレット展開に関する無条件収束性2014

    • Author(s)
      木下保
    • Organizer
      ウェーブレット解析の研究集会
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2014-11-04 – 2014-11-05
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] On the construction of band-limited wavelets with the Prouhet-Thue-Morse sequence2014

    • Author(s)
      木下保
    • Organizer
      偏微分方程式の研究集会
    • Place of Presentation
      北海道教育大学
    • Year and Date
      2014-10-11 – 2014-10-12
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] On the wavelet-Galerkin method with the symplectic structure for Hamiltonian systems2013

    • Author(s)
      木下 保
    • Organizer
      偏微分方程式の研究集会
    • Place of Presentation
      九州情報大学 太宰府市
    • Related Report
      2013 Research-status Report
  • [Presentation] Some applications of wavelet analysis for hyperbolic equations2013

    • Author(s)
      木下 保
    • Organizer
      偏微分方程式の国際研究集会
    • Place of Presentation
      京都大学 京都市
    • Related Report
      2013 Research-status Report
  • [Presentation] On the Wavelets Having Gevrey Regularities and Subexponential Decays2012

    • Author(s)
      木下 保
    • Organizer
      偏微分方程式研究会
    • Place of Presentation
      函館未来大学、函館
    • Related Report
      2012 Research-status Report
  • [Presentation] 無限回微分可能で指数的な減少度をもたないウェーブレットの限界について2012

    • Author(s)
      木下 保
    • Organizer
      ウェーブレット研究部会セミナー
    • Place of Presentation
      大阪教育大学、大阪
    • Related Report
      2012 Research-status Report
  • [Presentation] On the wavelets having Gevrey regularities and subexponential decays2012

    • Author(s)
      木下 保
    • Organizer
      調和解析研究会
    • Place of Presentation
      首都大学東京、東京
    • Related Report
      2012 Research-status Report
    • Invited

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi