• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A new development of stochastic differential geometry associated with degenerate differential operators

Research Project

Project/Area Number 24540178
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKyushu University

Principal Investigator

TANIGUCHI Setsuo  九州大学, 基幹教育院, 教授 (70155208)

Co-Investigator(Renkei-kenkyūsha) MATSUMOTO Hiroyuki  青山学院大学, 理工学部, 教授 (00190538)
SHIRAI Tomoyuki  九州大学, マス・フォア・インダストリ研究所, 教授 (70302932)
UEMURA Hideaki  愛知教育大学, 教育学部, 教授 (30203483)
Project Period (FY) 2012-04-01 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2014: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2013: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2012: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
KeywordsCR-多様体 / CR-ブラウン運動 / 熱核 / 確率微分幾何 / Malliavin解析
Outline of Final Research Achievements

A diffusion process generated by a sub-Laplacian, which is a real part of the Kohn-Rossi Laplacian on a CR-manifold, is constructed in a globally geometrical manner by extending the Elles-Elworthy-Malliavin approach to the Brownian motion on a Riemannian manifold. Using the diffusion process (CR-Brownian motion), the heat equation and the Dirichlet problem associated with the sub-Laplacian are investigated in a stochastically analytic manner.

Report

(4 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (4 results)

All 2015 2014 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results) Presentation (2 results) (of which Invited: 1 results) Remarks (1 results)

  • [Journal Article] A NEW CLASS OF AMPLITUDE FUNCTIONS FOR THE STATIONARY PHASE METHOD ON AN ABSTRACT WIENER SPACE2015

    • Author(s)
      Setsuo Taniguchi
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 69 Issue: 1 Pages: 219-228

    • DOI

      10.2206/kyushujm.69.219

    • NAID

      130005076143

    • ISSN
      1340-6116, 1883-2032
    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Diffuison processes on CR-manifolds2014

    • Author(s)
      Setsuo Taniguchi
    • Organizer
      UK-Japan stochastic analysis school 2014
    • Place of Presentation
      Warwick University
    • Year and Date
      2014-09-05
    • Related Report
      2014 Annual Research Report
  • [Presentation] Rolling manifolds

    • Author(s)
      谷口説男
    • Organizer
      研究集会「確率解析」
    • Place of Presentation
      京都大学数理解析研究所
    • Related Report
      2013 Research-status Report
    • Invited
  • [Remarks] Welcome to S. Taniguchi's Wiki!

    • URL

      https://mserve.artsci.kyushu-u.ac.jp/groups/s_taniguchi/

    • Related Report
      2013 Research-status Report

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi