• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Explanatory Analysis of Probabilistic Graphical Models based on Discriminative Pattern Mining

Research Project

Project/Area Number 24700141
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Research InstitutionMeijo University

Principal Investigator

KAMEYA Yoshitaka  名城大学, 理工学部, 准教授 (60361789)

Project Period (FY) 2012-04-01 – 2014-03-31
Project Status Completed (Fiscal Year 2013)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsベイジアンネット / 説明的分析 / 識別パターン発見 / ベイジアンネットワーク / 識別パターン / 分枝限定法
Research Abstract

In this project, we have developed an explanatory analysis method for probabilistic models, Bayesian networks in paticular, to bring explanability to machine learning techniques. Our analysis aims to find an appropriate explanation for the observation from a huge number of possible ones. To do this in practical time, we built some sophisticated techniques for discriminative pattern mining based on a popular frequent pattern mining algorithm called FP-Growth. Finally, we have achieved to refine the selection criteria of explanations and to have a fast discriminative pattern mining algorithm. Although there remains a future work on optimizing probabilistic inference for our explanatory analysis, we have obtained a couple of new insights and prototype tools towards an implementation of our explanatory analysis method.

Report

(3 results)
  • 2013 Annual Research Report   Final Research Report ( PDF )
  • 2012 Research-status Report
  • Research Products

    (6 results)

All 2013 2012

All Presentation (6 results)

  • [Presentation] Depth-First Traversal over a Mirrored Space for Non-redundant Discriminative Itemsets2013

    • Author(s)
      Y. Kameya, H. Asaoka
    • Organizer
      The 15^<th> International Conference on Data Warehousing and Knowledge Discovery (DaWaK-13)
    • Related Report
      2013 Final Research Report
  • [Presentation] Naive Bayesモデルを用いた効率的なクラスタラベリング手法2013

    • Author(s)
      小島諒介,亀谷由隆,佐藤泰介
    • Organizer
      人工知能学会第88回人工知能基本問題研究会
    • Related Report
      2013 Final Research Report
  • [Presentation] Depth-First Traversal over a Mirrored Space for Non-redundant Discriminative Itemsets2013

    • Author(s)
      Yoshitaka Kameya, Hiroki Asaoka
    • Organizer
      15th International Conference on Data Warehousing and Knowledge Discovery
    • Place of Presentation
      プラハ経済大学(チェコ)
    • Related Report
      2013 Annual Research Report
  • [Presentation] Naive Bayesモデルを用いた効率的なクラスタラベリング手法2013

    • Author(s)
      小島諒介,亀谷由隆,佐藤泰介
    • Organizer
      人工知能学会第83回人工知能基本問題研究会
    • Place of Presentation
      沖縄県石垣市
    • Related Report
      2012 Research-status Report
  • [Presentation] RP-Growth : Top-k Mining of Relevant Patterns with Minimum Support Raising2012

    • Author(s)
      Y. Kameya, T. Sato
    • Organizer
      The 2012 SIAM International Conference on Data Mining (SDM-12)
    • Related Report
      2013 Final Research Report
  • [Presentation] RP-Growth: Top-k Mining of Relevant Patterns with Minimum Support Raising2012

    • Author(s)
      Y. Kameya, T. Sato
    • Organizer
      The 2012 SIAM International Conference on Data Mining
    • Place of Presentation
      Anaheim, California, USA
    • Related Report
      2012 Research-status Report

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi