Automorphic forms, algebraic varieties and Iwasawa theory
Project/Area Number |
24740017
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Algebra
|
Research Institution | Nara Women's University |
Principal Investigator |
OKAZAKI Takeo 奈良女子大学, 自然科学系, 准教授 (80437334)
|
Research Collaborator |
YAMAUCHI Takuya 鹿児島大学, 教育学部, 准教授 (90432707)
|
Project Period (FY) |
2012-04-01 – 2015-03-31
|
Project Status |
Completed (Fiscal Year 2014)
|
Budget Amount *help |
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | Newform / GU(2,2) / Siegel Modular Form / Automorphic L-function / automorphic forms / 保型形式 / Siegel 3次元多様体 / theta 対応 / Hermite 保型形式 / 国際情報交換 / アメリカ, カナダ |
Outline of Final Research Achievements |
We established functional equations for automorphic representations of GU(2,2), and a New form theory corresponding to them. We call D-paramodular subgroups which fix the new forms. In particular, when the automorphic representation is distinguished, it has a D-paramodular Shalika period. By considering the theta correspondence between GSp(4) and GU(2,2), we give a proof for a conjecture of van Geemen and van Straten.
|
Report
(4 results)
Research Products
(2 results)