Co-Investigator(Kenkyū-buntansha) |
高坂 良史 神戸大学, 海事科学研究科, 准教授 (00360967)
石井 克幸 神戸大学, 海事科学研究科, 教授 (40232227)
山田 澄生 学習院大学, 理学部, 教授 (90396416)
小池 直之 東京理科大学, 理学部第一部数学科, 教授 (00281410)
水野 将司 日本大学, 理工学部, 准教授 (80609545)
神保 秀一 北海道大学, 理学(系)研究科(研究院), 教授 (80201565)
|
Budget Amount *help |
¥41,080,000 (Direct Cost: ¥31,600,000、Indirect Cost: ¥9,480,000)
Fiscal Year 2017: ¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
Fiscal Year 2016: ¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
Fiscal Year 2015: ¥9,750,000 (Direct Cost: ¥7,500,000、Indirect Cost: ¥2,250,000)
Fiscal Year 2014: ¥7,800,000 (Direct Cost: ¥6,000,000、Indirect Cost: ¥1,800,000)
Fiscal Year 2013: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
|
Outline of Final Research Achievements |
We proved the basic existence and regularity theorems for the mean curvature flow considered in the framework of geometric measure theory which is called Brakke's mean curvature flow. As for the existence theorem, when given an arbitrary n-dimensional closed set in an n+1-dimensional Euclidean space, we proved the time global existence of the Brakke's mean curvature flow that evolves from the given initial data. For the analysis of the singular set, we proved the regularity theory around triple junction in the one-dimensional case, and showed the strong stability property of the triple junction within the weak topology of measure.
|