Functional Model of Acquisition of Spoken Language Using Categorical Algorithm and Hidden Markov Model
Project/Area Number |
25330201
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Perceptual information processing
|
Research Institution | University of the Ryukyus |
Principal Investigator |
Takara Tomio 琉球大学, 工学部, 教授 (70163326)
|
Co-Investigator(Kenkyū-buntansha) |
IHA Yasushi 国立沖縄高等専門学校, 教授 (60390564)
|
Project Period (FY) |
2013-04-01 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2014: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2013: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 隠れマルコフモデル / クラスタ化 / 言語獲得 / モデル / 音声模倣 / 音声言語 / 獲得 / 模倣 / フォルマント / 音声合成 / 教師なし学習 / 音声言語獲得モデル / 音素獲得 / 知覚的マグネット効果 / フォルマント周波数 / 主成分分析 / 聴取実験 / 音素 / 単語 / 子音 / デルタパラメータ |
Outline of Final Research Achievements |
We constructed a computer model simulating a baby which can acquire spoken language by itself. Acquisition of vowels is modeled as a clustering of clear parts of speech. Acquisition of words is modeled as a clustering of the hidden Markov model. Consonants are modeled as the different sound part of two words which has the same vowel sequences. Self-training of speech by a baby is modeled by articulatory parameters and the genetic algorithm. It was shown that we can construct a human acquisition model of spoken language if we use the categorical algorithm and the hidden Markov model.
|
Report
(4 results)
Research Products
(8 results)