• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

p-adic cohomologies of arithmetic varieties

Research Project

Project/Area Number 25400023
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionTokyo Denki University

Principal Investigator

NAKAJIMA Yukiyoshi  東京電機大学, 工学部, 教授 (80287440)

Project Period (FY) 2013-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2013: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsp進コホモロジー / 無限小コホモロジー / 重みフィルトレーション / Weil-Deligne群 / フロベニウス作用素 / モノドロミー作用素 / 固有半安定多様体 / 対数クリスタルコホモロジー / p進モノドロミー作用素 / フロベニウス写像 / Ogus予想 / p 進重み複体 / p 進重み複体の幾何的射に関する反変関手性 / p 進重みフィルトレーションの収束性 / p 進重みフィルトレーションの狭両立性 / p 進モノドロミー重み予想 / p 進対数的強 Lefshetz予想 / 割ベキ対数拡張化 / p進Steenbrink複体 / p進重み系列 / E2退化 / F無限span / クリスタル的手法 / 対数的ドラームーブィット重み複体 / p進重みフィルトレーション / (p進)収束性 / 条件的穴空き対数変換 / 無限小コモロジー / 狭両立性 / 反変関手性 / 遺伝的分裂固有半安定型多様体 / p進重みフィルとレーション付き複体 / p進モノドロミー予想 / 任意固有多様体
Outline of Final Research Achievements

There is a theory which solves arithmetic problems by geometric methods. This is called theory of arithmetic geometry. In this theory, there is a notion of the infinitesimal cohomology. Concretely speaking, we show that there exists a well-defined increasing filtration on the infinitesimal cohomology, which we call the limit weight filtration. We also prove that the Weil-Deligne group (this is generated by a Frobenius and a monodoromy operator) acts compatibly with the weight filtration. Moreover, we prove that this action commutes with the induced morphism on the infinitesimal cohomology by a morphism of geometry objects.

Academic Significance and Societal Importance of the Research Achievements

有理数体や有限体や有理数体を素数pによって決まるp進距離で完備化したp進体を係数とする代数方程式の零点で定義される幾何的対象である代数多様体には数論的手法で得られる様々なコホモロジーと呼ばれる線型空間がある. それらのコホモロジーを使って, 元々の多様体の性質を調べる方法があるが, 本研究はp進体上の代数多様体の無限小コホモロジーと呼ばれるコホモロジーには極限重みフィルトレーションという意味深い構造があることを解明し, さらに基本的性質を調べた.

Report

(7 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (6 results)

All 2018 2017 2016 2014

All Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 6 results)

  • [Presentation] Artin-Mazur height, Yobuko height and Hodge-Wittt cohomologies2018

    • Author(s)
      中島幸喜
    • Organizer
      東京大学大学院数理科学研究科理学部数学科・理学部数学科 代数幾何学セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Artin-Mazur’s height and Yobuko’s height2018

    • Author(s)
      中島幸喜
    • Organizer
      Hakodate workshop on arithmetic geometry 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] p-adic Steenbrink filtered complexes of proper SNCL schemes and their fundamental properties2018

    • Author(s)
      Yukiyoshi Nakajima
    • Organizer
      数論幾何研究集会
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Log deformation theory with Frobenius morphisms2017

    • Author(s)
      Yukiyoshi Nakajima
    • Organizer
      数論幾何研究集会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Infinitesimal deformation invariance of log crystalline cohomologies with weight filtrations of SNCL schemes2016

    • Author(s)
      中島幸喜
    • Organizer
      p進コホモロジーと数論幾何学
    • Place of Presentation
      東京電機大学
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Several p-adic weight spectral sequences of SNCL schemes in characteristic p2014

    • Author(s)
      中島幸喜
    • Organizer
      p-adic cohomology and its applications, 2014
    • Place of Presentation
      東北大学川井ホール (宮城県仙台市)
    • Related Report
      2013 Research-status Report
    • Invited

URL: 

Published: 2014-07-25   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi