• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies of Mordell-Weil Lattices

Research Project

Project/Area Number 25400052
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionRikkyo University

Principal Investigator

SHIODA Tetsuji  立教大学, 名誉教授, 名誉教授 (00011627)

Co-Investigator(Renkei-kenkyūsha) AOKI Noboru  立教大学, 理学部, 教授 (30183130)
Project Period (FY) 2013-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2013: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords代数幾何学 / モーデル・ヴェイユ格子 / ガロア表現 / 有理楕円曲面 / フェルマー曲面 / ネロン・セヴェリ格子 / 高種数ファイブレーション / 乗法的卓越族 / K3曲面 / 楕円曲面 / 高種数曲線ファイブレーション / ネロン・セヴェリ群 / ピカール数 / 3次曲面と27直線 / 楕円ファイブレーション / ハイト公式 / 3次曲面と27直線 / ワイヤストラス変換
Outline of Final Research Achievements

The study of Mordell-Weil lattices has been focused on the following subjects.
1. The multiplicative excellent family of rational elliptic surfaces has the defining Weierstrass equation such that the coefficients form a set of fundamental invariants of the Weyl group in a Laurent polynomial ring. So the Mordell-Weil lattices, originally of Diophantine nature, can have a direct connection with the fundamental representations of Lie groups of the corresponding type, which admits various applications.
2. We have examined the structure of Mordell-Weil lattices of higher genus fibration on a Fermat surface. If the degree is relatively prime to 6, the structure (rank, height pairing etc.) is determined. More generally, the method applies to smooth surfaces containing a line.

Report

(5 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (16 results)

All 2017 2016 2015 2014 2013 Other

All Int'l Joint Research (1 results) Journal Article (6 results) (of which Peer Reviewed: 6 results,  Acknowledgement Compliant: 4 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 6 results,  Invited: 9 results)

  • [Int'l Joint Research] Hannover University(Germany)

    • Related Report
      2016 Annual Research Report
  • [Journal Article] On a smooth quartic surface containing 56 lines which is isomorphic as a K3 surface to the Fermat quartic2016

    • Author(s)
      Shimada, Ichiro; Shioda, Tetsuji
    • Journal Title

      manuscripta mathematica

      Volume: - Issue: 1-2 Pages: 279-297

    • DOI

      10.1007/s00229-016-0886-3

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Mordell-Weil Lattice of higher genus fibration on a Fermat surface2015

    • Author(s)
      SHIODA, TETSUJI
    • Journal Title

      J. Math. Sci. Univ. Tokyo

      Volume: 22 Pages: 443-468

    • NAID

      120006906138

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] The MWL-Algorithms for constructing cubic surfaces with preassigned 27 lines2015

    • Author(s)
      SHIODA, TETSUJI
    • Journal Title

      Commentarii Math. Univ. St. Pauli

      Volume: 64 Pages: 157-186

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Mordell-Weil Lattice of Higher Genus Fibration on a Fermat Surface2015

    • Author(s)
      SHIODA, TETSUJI
    • Journal Title

      J. Math. Sci. Univ. Tokyo

      Volume: 22 Pages: 443-468

    • NAID

      120006906138

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Multiplicative excellent families elliptic surfaces of type E_7 or E_82013

    • Author(s)
      KUMAR, Abhinav and SHIODA, TETSUJI
    • Journal Title

      Algebra & Number Theory

      Volume: 7:7 Issue: 7 Pages: 1613-1641

    • DOI

      10.2140/ant.2013.7.1613

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] Elliptic fibrations ofmaximal rank on a supersingular K3 surface2013

    • Author(s)
      T. Shioda(塩田)
    • Journal Title

      Izvestia RAS, Ser. Math.

      Volume: 77(3) Issue: 3 Pages: 139-148

    • DOI

      10.4213/im8017

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Presentation] Mordell-Weil Lattices and Invariant Theory2017

    • Author(s)
      塩田徹治
    • Organizer
      Igusa Conference:Local zeta functions and the arithmetic of moduli spaces,
    • Place of Presentation
      ジョンズ・ホプキンス大学日米数学研究所(ボルチモア市米国)
    • Year and Date
      2017-03-22
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Brieskorn's resolution and excellent families of elliptic surfaces2016

    • Author(s)
      塩田徹治
    • Organizer
      代数幾何学
    • Place of Presentation
      ハノーバー大学代数幾何学研究所(ハノーバー市ドイツ)
    • Year and Date
      2016-09-16
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Mordell-Weil Lattice of higher genus fibration on a Fermat surface2016

    • Author(s)
      塩田徹治(SHIODA, TETSUJI )
    • Organizer
      Conference "Branched coverings, Degenerations and Related Topics 2016”
    • Place of Presentation
      広島大学(広島県東広島市)
    • Year and Date
      2016-03-08
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] An elementary algorithm for constructing a cubic surface with the 27 lines2016

    • Author(s)
      塩田徹治(SHIODA, TETSUJI )
    • Organizer
      Conference "Branched coverings, Degenerations and Related Topics 2016”
    • Place of Presentation
      広島大学(広島県東広島市)
    • Year and Date
      2016-03-07
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The MWL-algorithm for cubic surfaces with 27 lines2015

    • Author(s)
      塩田徹治(SHIODA, TETSUJI )
    • Organizer
      代数幾何学セミナー
    • Place of Presentation
      ハノーヴァー大学(ドイツ)
    • Year and Date
      2015-09-22
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Mordell-Weil Lattice of higher genus fibration on a Fermat surface2015

    • Author(s)
      塩田徹治(SHIODA, TETSUJI )
    • Organizer
      Katz's Conference: Arithmetic Algebraic Geometry.
    • Place of Presentation
      数学研究所(AMSS)・中国学士院(CAS)、北京(中国)
    • Year and Date
      2015-05-13
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Mordell-Weil Lattice of Higher Genus Fibration on a Fermat Surface2015

    • Author(s)
      塩田 徹治
    • Organizer
      2015 Arithmetic and Algebraic Geometry
    • Place of Presentation
      東京大学大学院数理科学科(東京と目黒区)
    • Year and Date
      2015-01-29
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] フェルマー曲面上の高種数曲線族に対するモーデル・ヴェイユ格子について2014

    • Author(s)
      塩田 徹治
    • Organizer
      立教数学談話会
    • Place of Presentation
      立教大学理学部数学科(東京都豊島区)
    • Year and Date
      2014-04-09
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] Weierstrass transformation and cubic surfaces

    • Author(s)
      塩田 徹治
    • Organizer
      2014 Arithmetic and Algebraic Geometry
    • Place of Presentation
      東京大学大学院数理科学科
    • Related Report
      2013 Research-status Report
    • Invited

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi