• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The research for algebraic surfaces with a pencil consisting of a non-hyperelliptic curve

Research Project

Project/Area Number 25400058
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionIchinoseki National College of Technology

Principal Investigator

Tomokuni Takahashi  一関工業高等専門学校, その他部局等, 教授 (50259793)

Project Period (FY) 2013-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2014: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2013: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords代数曲面 / ファイブレーション / 勾配 / 堀川指数 / 標準写像 / 変形 / 射影曲面 / ファイバー空間 / 勾配等式 / 変形族 / 相対2次超曲面 / 射影空間束 / 相対標準写像 / ファイバー空間の勾配 / 非超楕円曲線 / 退化ファイバー
Outline of Final Research Achievements

We got the partial results for the construction of a family of projective plane bundles over an elliptic curve, which is needed for the construction of families of algebraic surfaces with a non-hyperellptic fibration of genus 3 over an elliptic curve whose slope attains the lower bound. We got certain results for effective divisor classes of projective plane bundles over an elliptic curve which is related to the classification of surfaces with a locally trivial non-hyperelliptic fibration of genus 3 over an elliptic curve. We got the necessary condition for non-hyperelliptic fibrations of genus 4 and rank 3 so that their multiplicative map are not surjective by giving certain inequality for Horikawa index.

Academic Significance and Societal Importance of the Research Achievements

複素数体上の非特異射影曲面に関する研究に関して、小平次元が1以下のものについてはその構造等についてかなりのことが知られている。一方、小平次元が2の場合、即ち、一般型の曲面については未知の部分が多く残されている。単に極小な一般型曲面という設定の下で研究をしようとすると、現れる曲面の族が膨大なものになるため、何らかの条件を付加して行うのが一般的である。我々は一般型射影曲面のうちで、非特異射影曲線上の一般ファイバーが非超楕円曲線であるようなファイブレーションの構造を持つものの構造や、変形族の構成等についていくつかの結果を得た。これは、他の一般型曲面の構造や分類にも役立つ結果であると思われる。

Report

(7 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (3 results)

All 2019 2018 2016

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Journal Article] Rocky Mountain Journal of Mathematics2019

    • Author(s)
      Tomokuni Takahashi
    • Journal Title

      Effective Divisor Classes of a Projective Plane Bundles Over an Elliptic Curve

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Projective Plane Bundles over an Elliptic Curve2018

    • Author(s)
      Tomokuni Takahashi
    • Journal Title

      Canad. Math. Bull.

      Volume: 61 (1) Issue: 1 Pages: 201-210

    • DOI

      10.4153/cmb-2017-025-8

    • Related Report
      2018 Annual Research Report 2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Non-hyperelliptic fibration of genus 4 containing certain degenerate fibers2016

    • Author(s)
      Tomokuni Takahashi
    • Organizer
      Branched Covering, Degenerations and Related Topics
    • Place of Presentation
      広島大学
    • Year and Date
      2016-03-07
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2014-07-25   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi