The construction of canonical form theory in geometry
Project/Area Number |
25400070
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Kyoto Institute of Technology |
Principal Investigator |
Ikawa Osamu 京都工芸繊維大学, 基盤科学系, 教授 (60249745)
|
Project Period (FY) |
2013-04-01 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2013: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 対称三対 / 対称空間 / 超極作用 / 実形 / Hermann作用 / Hermann作用 / エルミート対称空間 / 複素旗多様体 / 標準形 / Hermite対称空間 |
Outline of Final Research Achievements |
(1) For a given compact connected simple Lie group and an involution on it, we can define a hyperpolar action. The author studied the orbit space and the properties of each orbit of the action. The result is a natural extension of maximal torus theory.
(2) We studied the necessary and sufficient condition that two real forms in a Hermitian symmetric space of compact type intersect discretely. When the intersection is discrete we expressed the intersection as the orbit of a Weyl group which is defined by a symmetric triad. Moreover we generalized the result when the ambient space is a generalized flag manifold.
|
Report
(4 results)
Research Products
(18 results)
-
-
-
-
-
-
-
-
-
-
[Presentation] 対称三対の基礎と応用2014
Author(s)
井川 治
Organizer
日本数学会秋季総合分科会 幾何学分科会 特別講演
Place of Presentation
広島大学
Year and Date
2014-09-24 – 2014-09-28
Related Report
Invited
-
-
-
-
-
-
-
-