• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Well-posedness for nonautonomous differential systems with dissipativity structure described by metric-like functionals

Research Project

Project/Area Number 25400134
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionShizuoka University

Principal Investigator

TANAKA Naoki  静岡大学, 理学部, 教授 (00207119)

Co-Investigator(Kenkyū-buntansha) SHIMIZU Senjo  京都大学, 人間・環境学研究科, 教授 (50273165)
ISHII Katsuyuki  神戸大学, 海事科学研究科, 教授 (40232227)
Co-Investigator(Renkei-kenkyūsha) MATSUMOTO Toshitaka  静岡大学, 理学部, 教授 (20229561)
Project Period (FY) 2013-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2014: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2013: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordsevolution operator / metric-like functional / connectedness condition / subtangential condition / dissipativity condition / monotone operator / Lipschitz semigroup / comparison function / dissipativity / connected condition / weak continuity / revel set / quasilinear equation / Favard class / semigroup of operators / delay equation / 退化準線形発展方程式 / リプシッツ発展作用素 / 非自励な方程式系
Outline of Final Research Achievements

We characterize the well-posedness for nonautonomous differential equations governed by continuous operators, using dissipativity conditions with respect to metric-like functionals, subtangential conditions and connectedness conditions. Toward to the non-continuous case, we generalize the cerebrated well-posedness result on autonomous differential equations governed by maximal monotone operators due to Komura and Brezis. Moreover, we discuss the well-posedness for functional differential equations and the solvability of abstract Cauchy problems for weakly continuous operators.

Report

(4 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (12 results)

All 2016 2015 2014 2013 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Acknowledgement Compliant: 2 results,  Open Access: 1 results) Presentation (6 results) Remarks (2 results)

  • [Journal Article] Abstract Cauchy problem for weakly continuous operators2016

    • Author(s)
      Toshitaka Matsumoto and Naoki Tanaka
    • Journal Title

      J. Math. Anal. Appl.

      Volume: 435 Issue: 1 Pages: 267-285

    • DOI

      10.1016/j.jmaa.2015.10.027

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Nonautonomous differential equations and Lipschitz evolution operators in Banach spaces2015

    • Author(s)
      Yoshikazu Kobayashi and Naoki Tanaka
    • Journal Title

      Hiroshima Math. J.

      Volume: 45

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] The abstract Cauchy problem for dissipative operators with respect to metric-like functionals2015

    • Author(s)
      N. Tanaka
    • Journal Title

      J. Math. Anal. Appl.

      Volume: 421 Issue: 1 Pages: 539-566

    • DOI

      10.1016/j.jmaa.2014.07.021

    • Related Report
      2014 Research-status Report
    • Peer Reviewed
  • [Journal Article] Flow invariance for differential delay equations2015

    • Author(s)
      N. Tanaka
    • Journal Title

      Proc. Amer. Math. Soc.

      Volume: 143 Issue: 6 Pages: 2459-2468

    • DOI

      10.1090/s0002-9939-2015-12437-9

    • Related Report
      2014 Research-status Report
    • Peer Reviewed
  • [Presentation] サイズ構造モデルへの準線形理論的接近法2016

    • Author(s)
      松本敏隆
    • Organizer
      日本数学会2016年度年会
    • Place of Presentation
      筑波大学 (茨城)
    • Year and Date
      2016-03-18
    • Related Report
      2015 Annual Research Report
  • [Presentation] Mutational equation に対する適切性定理について2015

    • Author(s)
      田中直樹
    • Organizer
      第41回発展方程式研究会
    • Place of Presentation
      日本女子大学 (東京)
    • Year and Date
      2015-12-25
    • Related Report
      2015 Annual Research Report
  • [Presentation] Well-posedness for semilinear functional differential equations2014

    • Author(s)
      佐野弘貴, 田中直樹
    • Organizer
      第40回発展方程式研究会
    • Place of Presentation
      日本女子大学目白キャンパス(東京都)
    • Year and Date
      2014-12-25
    • Related Report
      2014 Research-status Report
  • [Presentation] 弱連続作用素に対する抽象的Cauchy問題について2014

    • Author(s)
      松本敏隆, 田中直樹
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      広島大学東広島キャンパス(広島県)
    • Year and Date
      2014-09-28
    • Related Report
      2014 Research-status Report
  • [Presentation] 遅れを伴った発展方程式の適切性2013

    • Author(s)
      佐野弘貴,田中直樹
    • Organizer
      第39回発展方程式研究会
    • Place of Presentation
      日本女子大学目白キャンパス(東京都)
    • Related Report
      2013 Research-status Report
  • [Presentation] The abstract Cauchy problem for dissipative operators with respect to metric-like functionals2013

    • Author(s)
      田中直樹
    • Organizer
      第39回発展方程式研究会
    • Place of Presentation
      日本女子大学目白キャンパス(東京都)
    • Related Report
      2013 Research-status Report
  • [Remarks] 静岡大学教員データベース

    • URL

      https://tdb.shizuoka.ac.jp/RDB/public/

    • Related Report
      2015 Annual Research Report 2014 Research-status Report
  • [Remarks] 静岡大学教員データベース

    • URL

      https://tdb.shizuoka.ac.jp/RDB/public/

    • Related Report
      2013 Research-status Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi