Research of Moduli spaces based on various metrics
Project/Area Number |
25400142
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Kagoshima University |
Principal Investigator |
OBITSU KUNIO 鹿児島大学, 理工学域理学系, 准教授 (00325763)
|
Co-Investigator(Kenkyū-buntansha) |
愛甲 正 鹿児島大学, 理工学域理学系, 教授 (00192831)
松村 慎一 東北大学, 理学研究科, 准教授 (90647041)
|
Project Period (FY) |
2013-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2014: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2013: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | リーマン面 / モジュライ / ケーラー計量 / 漸近展開 / モジュライ空間 / 双曲幾何 / 漸近解析 / 双曲計量 |
Outline of Final Research Achievements |
Main topic of this research is to find out the asymptotic expansion formula for the Weil-Petersson and the Takhtajan-Zograf metrics near the boundary of Moduli spaces of punctured Riemann surfaces. I have improved the former upper bound estimates of the asymptotic behavior of the Takhtajan-Zograf metric. Around 2015, Mazzeo, Swoboda, Melrose, and Zhu obtained the new proofs and some improvements of my previous estimates of the asymptotics of the Weil-Petersson and the Takhtajan-Zograf metrics. I discussed their new approaches with them, and now am working in unifying their and my techniques to get the complete expansion formulas.
|
Report
(5 results)
Research Products
(15 results)