• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on matrix polynomial theory and its applications

Research Project

Project/Area Number 25400204
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionNara University of Education

Principal Investigator

Ito Naoharu  奈良教育大学, 教育学部, 教授 (90246661)

Research Collaborator Wimmer H. K.  Universität Würzburg
Project Period (FY) 2013-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2015: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2014: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2013: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords行列多項式 / 高階差分方程式 / 作用素多項式 / 自己反転多項式 / 数域 / 内数域半径 / 固有値 / 近似固有値 / 正規近似固有値 / 自己反転行列多項式 / Enestroem-Kakeya型定理 / 国際情報交換(ドイツ) / Enestroem-Kakeya型の定理
Outline of Final Research Achievements

The spectrum of a class of self-inversive matrix polynomials was studied. It was shown that the characteristic values are normal, semisimple and lie on the unit circle if the inner radius of an associated matrix polynomial is greater than one. Then, we investigated higher order systems of linear difference equations where the associated characteristic matrix polynomial is selfinversive. We showed that all solutions are bounded if the inner radius is greater than one. In the case of matrix polynomials with positve definite coefficient matrices we derived a computable lower bound for the inner radius and we obtain a criterion for stable boundedness. Next, Hilbert space operator polynomials with self-inversive structure were studied. It was shown that if the inner numerical radius of an associated polynomial is greater than or equal to one then the spectrum lies on the unit circle and consists of normal approximate characteristic values.

Report

(4 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (6 results)

All 2016 2015 2014 2013 Other

All Int'l Joint Research (1 results) Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results) Presentation (3 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Universitaet Wuerzburg(ドイツ)

    • Related Report
      2015 Annual Research Report
  • [Journal Article] Self-inversive Hilbert space operator polynomials with spectrum on the unit circle2016

    • Author(s)
      Naoharu Ito and Harald K. Wimmer
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 436 Issue: 2 Pages: 683-691

    • DOI

      10.1016/j.jmaa.2015.11.072

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] 単位円周上にスペクトルをもつ自己反転作用素多項式に関する一考察2016

    • Author(s)
      伊藤直治
    • Organizer
      日本数学会年会
    • Place of Presentation
      筑波大学
    • Year and Date
      2016-03-16
    • Related Report
      2015 Annual Research Report
  • [Presentation] Bezout整域上の一般化Sylvester方程式に関する一考察2014

    • Author(s)
      伊藤直治
    • Organizer
      日本数学会年会
    • Place of Presentation
      学習院大学
    • Related Report
      2013 Research-status Report
  • [Presentation] 高階線形差分方程式系の解の有界性について2013

    • Author(s)
      伊藤直治
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      愛媛大学
    • Related Report
      2013 Research-status Report
  • [Funded Workshop] Workshop on mathematics and mathematical educatoin2015

    • Place of Presentation
      奈良教育大学
    • Year and Date
      2015-10-14
    • Related Report
      2015 Annual Research Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi