• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Knowledge Discovery Basis for Massive Behavioral Data

Research Project

Project/Area Number 25730127
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Research InstitutionTokyo University of Science (2014)
Gunma University (2013)

Principal Investigator

ANDO SHIN  東京理科大学, 経営学部, 講師 (70401685)

Project Period (FY) 2013-04-01 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2014: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2013: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords巨大情報資源マイニング / 系列パターンインデクシング / 時間非均質性 / データマイニング / 巨大事例集合 / センサデータストリーム / 物理行動マイニング
Outline of Final Research Achievements

This project devoted to building the foundation of the exploratory analysis for very large data sets. It achieved concrete results on behavior sensing data addressing the problems originating from velocity and variety common over very large data sets.
For learning discriminative models under sequence structured data with strong correlations between adjacent observations, we developed indexing based on primitive patterns which improved model interpretability and precision simultaneously in real-world data experiments. Furthermore, we developed cutting-plane method optimization in a multi-scale feature space for temporal data with heterogeneous time-scale and meta-feature generation method for anomaly detection in a multi-scale feature space. These developments made possible the reduction of prediction time and detection of multi-scale anomalies.

Report

(3 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Research-status Report
  • Research Products

    (7 results)

All 2015 2014 2013

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Acknowledgement Compliant: 3 results) Presentation (2 results)

  • [Journal Article] Minimizing Response Time in Time Series Classification2015

    • Author(s)
      Shin Ando, Einoshin Suzuki
    • Journal Title

      Knowledge and Information Systems, An International Journal

      Volume: TBD Issue: 2 Pages: 449-476

    • DOI

      10.1007/s10115-015-0826-7

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Classifying Imbalanced Data in Distance-based Feature Space2015

    • Author(s)
      Shin Ando
    • Journal Title

      Knowledge and Information Systems

      Volume: 未定

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] 特徴的部分系列に基づく時系列及び形状系列の判別分析2015

    • Author(s)
      須賀佑太朗,関庸一,安藤晋
    • Journal Title

      情報処理学会トランザクション誌(数理モデル化と問題解決)

      Volume: 未定 Pages: 0-0

    • NAID

      110009877755

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Ensemble anomaly detection from multi-resolution trajectory features2013

    • Author(s)
      Shin Ando, Theerasak Thanomphongphan, Yoichi Seki and Einoshin Suzuki
    • Journal Title

      Data Mining and Knowledge Discovery

      Volume: 印刷中 Issue: 1 Pages: 39-83

    • DOI

      10.1007/s10618-013-0334-x

    • Related Report
      2014 Annual Research Report 2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] Time-sensitive Classification of Behavioral Data2013

    • Author(s)
      Shin Ando, Einoshin Suzuki
    • Journal Title

      Proc. Thirteenth SIAM International Conference on Data Mining (SDM 2013)

      Volume: N/A Pages: 458-466

    • DOI

      10.1137/1.9781611972832.51

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Presentation] 特徴的部分系列に基づく時系列及び形状系列の判別分析2015

    • Author(s)
      須賀佑太朗
    • Organizer
      数理モデル化と問題解決(MPS)研究会(情報処理学会)
    • Place of Presentation
      長崎県島原市
    • Year and Date
      2015-03-03 – 2015-03-04
    • Related Report
      2014 Annual Research Report
  • [Presentation] Discriminative Learning on Exemplary Patterns in Sequential Numerical Data2014

    • Author(s)
      Shin Ando; Einoshin Suzuki
    • Organizer
      2014 IEEE International Conference on Data Mining
    • Place of Presentation
      Shengzhen, China
    • Year and Date
      2014-12-14 – 2014-12-17
    • Related Report
      2014 Annual Research Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi