• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on algebraic fibered surfaces by separable quotient and purely inseparable quotient

Research Project

Project/Area Number 25800018
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionKobe University

Principal Investigator

Mitsui Kentaro  神戸大学, 理学研究科, 助教 (70644889)

Research Collaborator NAKAMURA Iku  北海道大学, 大学院理学研究科, 名誉教授 (50022687)
Project Period (FY) 2013-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2013: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords代数曲線束 / 楕円曲面 / 正標数 / 分離商 / 純非分離商 / 曲線束 / 退化ファイバー / 主等質空間 / 整モデル / ガロワ・コホモロジー / 非分離商 / 曲面 / 商特異点 / 特異点解消 / トーリック幾何 / 分離商と純非分離商 / 特異ファイバー / リジッド幾何 / 正標数代数幾何 / 代数曲面 / アーベル多様体 / p進一意化
Outline of Final Research Achievements

In algebraic geometry, the classification of algebraic varieties is one of the most fundamental problems, where algebraic varieties are classified by means of their geometric invariants. We consider the case where algebraic varieties are surfaces that are fibered over curves. We develop the methods to calculate invariants of algebraic varieties, which are important in the classification theory. Algebraic varieties are defined as the solutions of simultaneous polynomial equations. In our studies, these polynomials are defined over not only the field of complex numbers but also more general fields. In particular, in the case of fields of positive characteristic, various new phenomena appear, and we develop theories to explain them.

Report

(5 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (6 results)

All 2017 2016 2015 2014 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Acknowledgement Compliant: 2 results) Presentation (2 results) (of which Invited: 2 results)

  • [Journal Article] The direct image sheaf $f_*(O_X)$2017

    • Author(s)
      Kentaro Mitsui, Iku Nakamura
    • Journal Title

      Tokyo J. Math.

      Volume: 39 Issue: 3 Pages: 777-782

    • DOI

      10.3836/tjm/1475723086

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Canonical bundle formula and base change2016

    • Author(s)
      K. Mitsui
    • Journal Title

      J. Algebraic Geom.

      Volume: 25 Issue: 4 Pages: 775-814

    • DOI

      10.1090/jag/663

    • NAID

      120005868286

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Homotopy exact sequences and orbifolds2015

    • Author(s)
      Kentaro Mitsui
    • Journal Title

      Algebra & Number Theory

      Volume: 9 Issue: 5 Pages: 1089-1136

    • DOI

      10.2140/ant.2015.9.1089

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] On a question of Zariski on Zariski surfaces2014

    • Author(s)
      Kentaro Mitsui
    • Journal Title

      Mathematische Zeitschrift

      Volume: 276 Issue: 1-2 Pages: 237-242

    • DOI

      10.1007/s00209-013-1195-0

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Presentation] 楕円曲面の特異ファイバーの研究とその応用

    • Author(s)
      三井健太郎
    • Organizer
      第58回代数学シンポジウム
    • Place of Presentation
      広島大学
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] On a question of Zariski on Zariski surfaces

    • Author(s)
      Kentaro Mitsui
    • Organizer
      Birational Geometry and Singularities in Positive Characteristic
    • Place of Presentation
      東京大学
    • Related Report
      2013 Research-status Report
    • Invited

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi