• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The analysis for the moduli space of Riemann surfaces using the discrete harmonic volume

Research Project

Project/Area Number 25800053
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionKisarazu National College of Technology

Principal Investigator

Tadokoro Yuuki  木更津工業高等専門学校, その他部局等, 准教授 (10435414)

Project Period (FY) 2013-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2015: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2014: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2013: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywordsリーマン面 / モジュライ空間 / 周期行列 / 調和体積 / 反復積分 / 超楕円曲線 / 写像類群 / トポロジー
Outline of Final Research Achievements

The moduli space of compact Riemann surfaces is the space of all biholomorphism classes of compact Riemann surfaces. The period matrix of compact Riemann surfaces is a well-known complex analytic invariant. It enables a quantitative study of the local structure of the moduli space. For generic genus, few examples of period matrices are known. Schindler computed the period matrices of three types of hyperelliptic curves of genus g. One of them contains a recurrence relation. However, we explicitly obtain the period matrix of this curve, its entries being elements of the (2g+1)-st cyclotomic field.

Report

(4 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (7 results)

All 2016 2015 2014 2013 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Acknowledgement Compliant: 3 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results) Remarks (1 results)

  • [Journal Article] Nontrivial algebraic cycles in the Jacobian varieties of some quotients of Fermat curves2016

    • Author(s)
      Yuuki Tadokoro
    • Journal Title

      Internat. J. Math.

      Volume: 27

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] The period matrix of the hyperelliptic curve $w^2=z^{2g+1}-1$2015

    • Author(s)
      Yuuki Tadokoro
    • Journal Title

      Tsukuba J. Math.

      Volume: 38 Issue: 2 Pages: 137-158

    • DOI

      10.21099/tkbjm/1429103717

    • NAID

      120006772020

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] The period matrix of the hyperelliptic curve $w^2=z^{2g+1}-1$2014

    • Author(s)
      Yuuki Tadokoro
    • Journal Title

      Tsukuba Journal of Mathematics

      Volume: 38 Pages: 137-158

    • NAID

      120006772020

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] The period matrix of the hyperelliptic curve $w^2=z^{2g+1}-1$2016

    • Author(s)
      田所勇樹
    • Organizer
      Mini-Workshop on Topology of Singularities, II
    • Place of Presentation
      東北大学
    • Year and Date
      2016-02-29
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The period matrix of the hyperelliptic curve $w^2=z^{2g+1}-1$2013

    • Author(s)
      田所勇樹
    • Organizer
      研究集会「代数多様体のトポロジーとその周辺」
    • Place of Presentation
      北海道大学数学教室
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] The period matrix of the hyperelliptic curve $w^2=z^{2g+1}-1$2013

    • Author(s)
      田所勇樹
    • Organizer
      研究集会「リーマン面に関連する位相幾何学」
    • Place of Presentation
      東京大学大学院数理科学研究科
    • Related Report
      2013 Research-status Report
    • Invited
  • [Remarks] researchmap

    • URL

      http://researchmap.jp/read0142336/

    • Related Report
      2013 Research-status Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi