• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on the existence and uniqueness of solutions for systems of conservation laws

Research Project

Project/Area Number 25800075
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Mathematical analysis
Research InstitutionNiigata University

Principal Investigator

OHWA HIROKI  新潟大学, 自然科学系, 助教 (10549158)

Project Period (FY) 2013-04-01 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2013: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords実解析 / 保存則方程式 / 非線形現象
Outline of Final Research Achievements

A proof of global existence of solutions with small total variation, to the Cauchy problem for one-dimensional n×n systems of conservation laws is appeared in the papers of A. Bressan (1992) and N. H. Risebro (1993). The proof relies on the wave-front tracking method. The wave-front tracking method is one of the famous methods of the proof. We give a simple argument in the wave-front tracking method and clearly prove the global existence of solutions for those systems. Moreover, as preparations to study the uniqueness of the solutions, we classify the discontinuities and obtain periodic properties of some piecewise linear functions.

Report

(3 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Research-status Report
  • Research Products

    (2 results)

All 2015 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (1 results)

  • [Journal Article] Periodic points of some discontinuous mappings2015

    • Author(s)
      Satomi Murakami, Hiroki Ohwa
    • Journal Title

      American Mathematical Monthly

      Volume: 未定

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed
  • [Presentation] n×n双曲型保存則方程式系に対する波面追跡法について

    • Author(s)
      應和 宏樹
    • Organizer
      日本数学会
    • Place of Presentation
      学習院大学目白キャンパス(東京都豊島区)
    • Related Report
      2013 Research-status Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi