Budget Amount *help |
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2013: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Outline of Final Research Achievements |
We develop an underlying relationship between the theory of rational approximations and that of isomonodromic deformations. We show that a certain duality in Hermite's two approximation problems for functions leads to the Schlesinger transformations, i.e. transformations of a linear differential equation shifting its characteristic exponents by integers while keeping its monodromy invariant. Since approximants and remainders are described by block-Toeplitzs determinants, one can clearly understand the determinantal structure in isomonodromic deformations. We demonstrate our method in a certain family of Hamiltonian systems of isomonodromy type including the sixth Painleve; equation and Garnier systems; particularly, we present their solutions written in terms of iterated hypergeometric integrals. An algorithm for constructing the Schlesinger transformations is also discussed through vector continued fractions.
|