• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Representation theory of homogeneous spaces over p-adic or finite fields

Research Project

Project/Area Number 26400011
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

Kato Shin-ichi  京都大学, 国際高等教育院, 教授 (90114438)

Research Collaborator TAKANO KEIJI  香川大学, 教育学部, 准教授 (40332043)
Project Period (FY) 2014-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords対称空間 / 表現論 / 簡約群 / p進体 / 有限体 / 局所体 / 球等質空間
Outline of Final Research Achievements

We studied representations and harmonic analysis of symmetric spaces associated to reductive groups with involution sigma on them over p-adic fields, as a generalization of the representation theory of these groups.
Relatively cuspidal representations for symmetric spaces are the counterparts of cuspidal representations for groups and viewed as the most fundamental tools in the study of the representation theory of symmetric spaces. Under the working hypothesis that relatively cuspidal representations should correspond to anisotropic maximal sigma-split tori, we succeeded in constructing relatively cuspidal representations as induced representations of cuspidal representations from sigma-stable parabolic subgroups for certain types of symmetric spaces associated with general linear groups. We also showed that relatively cuspidal representations cannot appear as induced representations from sigma-split parabolic subgroups if the inducing representations have generic parameters.

Academic Significance and Societal Importance of the Research Achievements

p進体上の対称空間の表現論は,それ自身が代数群の表現論として重要な位置を占めるだけではなく整数論の観点からも研究が欠かせないものである.本研究では作業仮説を提出して,最も基本的な相対尖点表現を誘導表現から構成している.これは,別のタイプの誘導表現からは相対尖点表現が得られないというもう一つの結果と合わせて,作業仮説を補強しており.p進対称空間の表現論の全体像の解明に大きく寄与するものである.またここで与えられた誘導表現による構成法は整数論にも応用されるものと思われる.
なお表現論は対称性を扱う数学的分野であることから,得られた成果は自然現象の対称性の理解にも役立つことが期待される.

Report

(6 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (5 results)

All 2019 2018 2017 2015

All Journal Article (2 results) (of which Open Access: 2 results,  Peer Reviewed: 1 results) Presentation (3 results)

  • [Journal Article] On some relatively cuspidal representations of GL_n over p-adic fields2019

    • Author(s)
      加藤信一,高野啓児
    • Journal Title

      数理解析研究所講究録

      Volume: 2103

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] On some relatively cuspidal representations: Cases of Galois and inner involutions on GL_n2019

    • Author(s)
      加藤信一,高野啓児
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 掲載予定

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] On some relatively cuspidal representations: Galois and inner involutions on GL_n2018

    • Author(s)
      加藤信一,高野啓児
    • Organizer
      RIMS共同研究(公開型)「表現論と代数、解析、幾何をめぐる諸問題」
    • Related Report
      2018 Annual Research Report
  • [Presentation] p進対称空間に付随した表現について2017

    • Author(s)
      加藤信一
    • Organizer
      弘前 表現論 小研究集会
    • Related Report
      2017 Research-status Report
  • [Presentation] p進対称空間の相対尖点表現について2015

    • Author(s)
      加藤信一
    • Organizer
      沖縄 表現論 研究小集会
    • Place of Presentation
      琉球大学理学部
    • Year and Date
      2015-11-08
    • Related Report
      2015 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi