• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On Morita and derived equivalences for blocks of finite groups

Research Project

Project/Area Number 26400026
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionTokyo University of Science

Principal Investigator

Kunugi Naoko  東京理科大学, 理学部第一部数学科, 准教授 (50362306)

Project Period (FY) 2014-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords有限群 / モジュラー表現 / ブロック / 森田同値 / 導来同値 / 安定同値
Outline of Final Research Achievements

One of the important conjectures in modular representation theory of finite groups is Broue's abelian defect group conjecture. It states that the principal blocks of two finite groups having a common abelian Sylow subgroup and the same p-local structures should be derived equivalent. To solve the conjecture it is important to develope the way of gluing local derived equkvalences to global stable equivalences and of lifting stable equivalences to derived equivalences. It is also important to investigate non-abelian defect group cases. In this research, We obtained a result for Brauer indecomposability of Scott modules with non-abelian vertex. We also obtained a reselt for construction of two-sided tilting complexes for Brauer tree algebras.

Academic Significance and Societal Importance of the Research Achievements

有限群のモジュラー表現において,有限群のブロックの導来同値や森田同値での分類は重要な問題である。とくに可換不足群をもつブロックとその局所部分群のブロックの導来同値性を述べたブルエの可換不足群予想や,指定した群を不足群にもつブロックの森田同値類の有限性を述べたドノバン予想は重要である。本研究の成果は,これらの予想の解決に向けた各ステップにおいて役立つような成果であり,重要な成果であると考えられる。

Report

(6 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (5 results)

All 2018 2017 2016 2015

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Acknowledgement Compliant: 1 results) Presentation (3 results)

  • [Journal Article] Two-sided tilting complexes for Brauer tree algebras2018

    • Author(s)
      Yuta Kozakai, Naoko Kunugi
    • Journal Title

      Journal of Algebra and Its Applications

      Volume: - Issue: 12 Pages: 1850231-1850231

    • DOI

      10.1142/s0219498818502316

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Brauer indecomposability of Scott modules2017

    • Author(s)
      Hiroki Ishioka, Naoko Kunugi
    • Journal Title

      Journal of Algebra

      Volume: 470 Pages: 441-449

    • DOI

      10.1016/j.jalgebra.2016.09.021

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Brauer樹木多元環の両側傾斜複体について2016

    • Author(s)
      小境雄太,功刀直子
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      関西大学
    • Related Report
      2016 Research-status Report
  • [Presentation] Construction of two-sided tilting complexes for Brauer tree algebras2015

    • Author(s)
      Yuta Kozakai, Naoko Kunugi
    • Organizer
      第48回環論および表現論シンポジウム
    • Place of Presentation
      名古屋大学
    • Year and Date
      2015-09-08
    • Related Report
      2015 Research-status Report
  • [Presentation] Scott加群のBrauer直既約性2015

    • Author(s)
      石岡大樹,功刀直子
    • Organizer
      日本数学会
    • Place of Presentation
      明治大学
    • Year and Date
      2015-03-23
    • Related Report
      2014 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi