• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies of cohomology groups associated with Poisson structures

Research Project

Project/Area Number 26400063
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionAkita University

Principal Investigator

MIKAMI KENTARO  秋田大学, 名誉教授, 名誉教授 (70006592)

Project Period (FY) 2014-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywordsポアソン構造 / リー代数・リー超代数 / ヤング図形 / (コ)ホモロジー群 / ゲルファント・フックス理論 / 荷重 / オイラー数 / ベッチ数 / スカウテン括弧積 / (スーパー)リー環 / 荷重・ウエイト / コホモロジー群 / ポアソン / シンプレクティック / ゲルファント・フックス / トーラス / フーリエ展開 / 周期関数 / ホモロジー群 / ポアソン括弧積 / オイラー特性類 / シンプレクティック構造 / シンプレクティック多様体 / 目時類 / 同次・斉次 / カシミール多項式 / ハミルトンベクトル場 / コホモロジー / ゲルファント・フックス・コホモロジー群 / 目時クラス
Outline of Final Research Achievements

The set of Hamiltonian vector fields from a Poisson structure consists a Lie algebra. Gel'fand-Fuks theory dealt with (co)chain complex and (co)homology groups of those Lie algebras and reduced general discussions to finite dimensional ones by using "weight". In our research project, we got results in 3 branches.
(1) In the relative GF-cohomology group of formal Hamiltonian vector fields on the 2-plane of weight 24, we identified all the Betti numbers after a long calculation of more than five years. There are 3 independent cycles in degree 7. (2) We modified the weight and developed Gel'fand-Fuks type theory for not only symplectic but also Poisson structures of homogeneous polynomial coefficients on vector space. (3) By Schouten bracket, the set of multivector fields of various degrees forms a Z-graded Lie superalgebra. We introduced a notion of "double weight" and obtained examples of polynomial coefficient multivector fields on n-dimensional vector space.

Academic Significance and Societal Importance of the Research Achievements

斜交平面の形式的ハミルトン場の荷重 24 ゲルファント・フックスコホモロジー群について、非自明なベッチ数の在り場所を特定出来、非自明な物の幾何学的性質の研究という新たな課題を見いだした意義は大きい。斜交空間でのゲルファント・フックス理論をポアソン空間のハミルトンベクトル場に対しても一般化した事で新たな研究の展開が期待される。
リー代数(環)の(コ)ホモロジー理論の類推としてのリー超代数の(コ)ホモロジー理論が成立し二重荷重(double weight)で有限化出来る例の存在も示し、ポアソン構造そのものの研究に寄与するとの見方を得た事は今後のポアソン幾何研究に貢献すると考える。

Report

(6 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (26 results)

All 2019 2018 2017 2016 2015 2014 Other

All Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Open Access: 4 results,  Peer Reviewed: 2 results,  Acknowledgement Compliant: 2 results) Presentation (12 results) (of which Int'l Joint Research: 4 results,  Invited: 11 results) Remarks (9 results)

  • [Journal Article] The second Betti number of doubly weighted homology groups of some pre Lie superalgebra}"2019

    • Author(s)
      Mikami, Kentaro and Mizutani, Tadayoshi",
    • Journal Title

      arXiv:1902.09137

      Volume: 2019

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] {Euler number of homology groups of super Lie algebra}2018

    • Author(s)
      Mikami, Kentaro and Mizutani, Tadayoshi",
    • Journal Title

      arXiv:1809.08028v1

      Volume: 2018

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Euler number and Betti numbers of homology groups of pre Lie superalgebra}",2018

    • Author(s)
      Mikami, Kentaro and Mizutani, Tadayoshi",
    • Journal Title

      arXiv:1809.08028v2

      Volume: 2018

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] An affirmative answer to a conjecture on the Metoki class2016

    • Author(s)
      Kentaro Mikami
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 68 Issue: 1 Pages: 151-167

    • DOI

      10.2969/jmsj/06810151

    • NAID

      130005122688

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] An affirmative answer to a conjecture on the Metoki class2015

    • Author(s)
      Kentaro Mikami
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 67

    • NAID

      130005122688

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Presentation] The second Betti number of homology groups of some pre Lie "superalgebras"2019

    • Author(s)
      三上健太郎
    • Organizer
      第42回伊豆トポロジーセミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Euler number of homology groups of "super" Lie algebras2018

    • Author(s)
      Kentaro Mikami
    • Organizer
      Foliations and Groups of Diffeomorphisms 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Poisson structures and Lie superalgebra homologies2018

    • Author(s)
      三上 健太郎
    • Organizer
      Poisson 幾何とその周辺
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 2nd trial of weighted GF theory for symplectic tori2018

    • Author(s)
      三上 健太郎
    • Organizer
      伊豆トポロジーセミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] A trial of weighted GF theory for symplectic tori2017

    • Author(s)
      三上 健太郎
    • Organizer
      様相構造と微分同相群2017
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Weighted (co)homology groups of homogeneous Poisson structures2016

    • Author(s)
      三上健太郎
    • Organizer
      葉層構造と微分同相群 2016 (Foliations and Diffeomorphism Groups 2016)
    • Place of Presentation
      東京大学玉原国際セミナーハウス
    • Year and Date
      2016-10-21
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Weighted cohomology of homogeneous Poisson structures2016

    • Author(s)
      Kentaro Mikami
    • Organizer
      Poisson 2016
    • Place of Presentation
      ETH Zurich, Switzerland
    • Year and Date
      2016-07-04
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] GF cohomology of Poisson structures2016

    • Author(s)
      Kentaro Mikami
    • Organizer
      Workshop on Development of new methods in Symplectic Geometry: JSPS Bilateral joint Research Project between Belgium and Japan
    • Place of Presentation
      Tohoku Forum for Creativity
    • Year and Date
      2016-04-25
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Cohomology of homogeneous Poisson structures2016

    • Author(s)
      三上 健太郎
    • Organizer
      名城大学幾何学研究会「幾何構造の深化」
    • Place of Presentation
      名城大学理工学部
    • Year and Date
      2016-03-01
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] Cohomology groups of homogeneous Poisson structures2016

    • Author(s)
      Kentaro Mikami
    • Organizer
      Workshop on Poisson Geometry and Mathematical Physics
    • Place of Presentation
      Chern Institute of Mathmematics of Nankai University (Teinjing, China)
    • Year and Date
      2016-01-04
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Cohomology groups of homogeneous Poisson structures2015

    • Author(s)
      三上 健太郎
    • Organizer
      秋田幾何セミナー
    • Place of Presentation
      秋田市カレッジプラザ
    • Year and Date
      2015-11-14
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] An affirmative answer to a conjecture of Metoki class2014

    • Author(s)
      Kentaro Mikami
    • Organizer
      葉層と微分同相群2014
    • Place of Presentation
      東京大学玉原国際研究所
    • Year and Date
      2014-10-24
    • Related Report
      2014 Research-status Report
    • Invited
  • [Remarks] arXiv:1705.10894.v2

    • URL

      https://arxiv.org

    • Related Report
      2017 Research-status Report
  • [Remarks] Cohomology groups of homogeneous Poisson structure

    • URL

      http://www.arXiv.org

    • Related Report
      2015 Research-status Report
  • [Remarks] ( arXiv:1407.1249)

    • URL

      http://www.arXiv.org

    • Related Report
      2015 Research-status Report
  • [Remarks] (arXiv:1402.6834)

    • URL

      http://www.arXiv.org

    • Related Report
      2015 Research-status Report
  • [Remarks] (arXiv:1210.1662)

    • URL

      http://www.arXiv.org

    • Related Report
      2015 Research-status Report
  • [Remarks] A proof to Kotschick-Morita theorem

    • URL

      http://www.math.akita-u.ac.jp/~mikami/Conj4MetokiClass

    • Related Report
      2015 Research-status Report
  • [Remarks] A proof to Kotschick-Morita thereom for

    • Related Report
      2014 Research-status Report
  • [Remarks] An affirmative answer to a conjecture for Metoki

    • Related Report
      2014 Research-status Report
  • [Remarks] Proof by Risa/Asir to a conjecture for Metoki

    • Related Report
      2014 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi