• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Topological invariants of manifolds, modular forms and Dedekind symbols

Research Project

Project/Area Number 26400098
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionTsuda University

Principal Investigator

Fukuhara Shinji  津田塾大学, その他部局等, 名誉教授 (20011687)

Co-Investigator(Kenkyū-buntansha) 宮澤 治子  津田塾大学, 付置研究所, 研究員 (40266276)
Project Period (FY) 2014-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords位相不変量 / デデキント和 / 保型形式 / 結び目 / 多様体 / 一般デデキント和 / 曲面上の曲線 / 結び目不変量 / ベルヌーイ数 / ジョーンズ多項式 / カウフマン多項式 / 相互法則 / 曲線の自己交差
Outline of Final Research Achievements

We studied generalized Dedekind symbols which are useful for expressing topological invariants. The Dedekind symbols satisfy reciprocity laws. We give general forms, not only for odd symbols, but also for even symbols.
Another result is concerned with homotopy invariants of curves on a surface. The invariant can be used for estimating numbers of self-intersections. This invariant has been inspired by Kauffman-Jones polynomials.

Report

(5 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (5 results)

All 2017 2015 2014

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Acknowledgement Compliant: 1 results) Presentation (2 results)

  • [Journal Article] Kauffman-Jones polynomial of a curve on a surface2017

    • Author(s)
      Fukuhara Shinji、Kuno Yusuke
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 26 Issue: 11 Pages: 1750062-1750078

    • DOI

      10.1142/s0218216517500626

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Linking invariants of even virtual links2017

    • Author(s)
      Haruko Aida Miyazawa, Kodai Wada and Akira Yasuhara
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 26 Issue: 12 Pages: 1750072-1750083

    • DOI

      10.1142/s0218216517500729

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Generating functions of even Dedekind symbols with polynomial reciprocity laws2014

    • Author(s)
      Shinji Fukuhara
    • Journal Title

      Abh. Math. Semin. Univ. Hambg.

      Volume: 84 Issue: 2 Pages: 139-153

    • DOI

      10.1007/s12188-014-0096-4

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] 交差の多重化から得られるウェルデッド絡み目の不変量2017

    • Author(s)
      和田 康載、宮澤治子、安原晃
    • Organizer
      東京女子大学トポロジーセミナー
    • Place of Presentation
      東京女子大学 9号館9101教室
    • Year and Date
      2017-04-22
    • Related Report
      2016 Research-status Report
  • [Presentation] Dedekind symbolと保型形式2015

    • Author(s)
      福原真二
    • Organizer
      リーマン面に関する位相幾何学2015
    • Place of Presentation
      東京大学数理科学研究科大講義室
    • Year and Date
      2015-08-25
    • Related Report
      2015 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2023-07-20  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi