Study of the operators on some function spaces in harmonic analysis
Project/Area Number |
26400129
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Yamagata University |
Principal Investigator |
SATO ENJI 山形大学, 理学部, 名誉教授 (80107177)
|
Co-Investigator(Kenkyū-buntansha) |
古谷 康雄 東海大学, 理学部, 教授 (70234903)
|
Co-Investigator(Renkei-kenkyūsha) |
KOBAYASHI Masaharu 北海道大学, 理学研究院, 准教授 (30516480)
|
Project Period (FY) |
2014-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2014: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 分数冪積分作用素 / モレー空間 / フーリエマルチプライヤー / モジュレーション空間 / 双線形作用素 / モリー空間 / ラデアル関数 / フーリエマルチプライヤー作用素 / 移転定理 / Lp空間 / アダムスの不等式 / 重み関数 |
Outline of Final Research Achievements |
Study of the operators in function spaces by harmonic analysis is very effective for partial differentiable equations. Moreover, it is important that an operator in some function spaces is bounded. Main subjects in our research are study of Fourier multiplier operators, study of fractional integral operators in Morrey spaces, and study of modulation spaces which are related to partial differential equations. First, we gave a simple proof of the restriction theorem of Fourier multipliers, and generalized the result of the fractional integral operators in Morrey spaces. Also we developed the result in modulation spaces by the study of operating functions.
|
Report
(4 results)
Research Products
(5 results)