• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Probabilistic study on problems related with random Schroedinger operators

Research Project

Project/Area Number 26400132
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKyoto University

Principal Investigator

Ueki Naomasa  京都大学, 人間・環境学研究科, 教授 (80211069)

Research Collaborator Ueno Yasushi  元京都大学, 大学院人間・環境学研究科
Funahashi Takumi  元京都大学, 大学院人間・環境学研究科
Project Period (FY) 2014-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords確率解析 / 微分方程式 / 作用素論 / 数理物理 / ランダムシュレディンガー作用素 / スペクトル / リフシッツテール / ランダム点配置 / 確率偏微分方程式 / ホワイトノイズ / アンダーソンモデル / Lifschitz tail / 累積状態密度関数 / Wegner 型評価 / 磁場
Outline of Final Research Achievements

As for the Lifshitz tail on the asymptotic behavior of the integrated density of states for the Schroedinger operator with single site potentials around all sample points of the Poisson point processes, the results are extended to a class of the random point processes with interactions between the sample points. For a remarkable subclass of the random point processes including the Ginibre point processes, the orders of the asymptotics are showen to be different with the case of the Poisson process.
On the other hand, the mathematical proof of the Anderson localization is extended to the Schroedinger operator with the Gaussian random magnetic fields.

Academic Significance and Societal Importance of the Research Achievements

リフシッツテールの問題の動機は不純物を含んだ半導体のエネルギー分布を明らかにすることにあるが、従来は不純物の配置のモデルとしてポアソン型点配置をとってきた。しかし本来は各ランダム点配置間に干渉を導入するべきであり、本研究はその方向に一定の成果をもたらした。特にポアソン型点配置の場合との違いがあることを示したことは意義深い。
アンダーソン局在は従来スカラーポテンシャルの山の高さがランダムな場合に示されてきたが磁場の曲げる作用がランダムな場合にも局在が起きるかどうかは直感的に明らかでなく、理論的に示したことは意義深い。

Report

(6 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (7 results)

All 2019 2018 2016 2015 2014

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results,  Acknowledgement Compliant: 1 results) Presentation (4 results)

  • [Journal Article] ASYMPTOTIC BEHAVIOR OF THE INTEGRATED DENSITY OF STATES FOR RANDOM POINT FIELDS ASSOCIATED WITH CERTAIN FREDHOLM DETERMINANTS2019

    • Author(s)
      Naomasa Ueki
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 73 Issue: 1 Pages: 43-67

    • DOI

      10.2206/kyushujm.73.43

    • NAID

      130007728818

    • ISSN
      1340-6116, 1883-2032
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Wegner estimates, Lifshitz tails, and Anderson localization for Gaussian random magnetic fields2016

    • Author(s)
      Naomasa Ueki
    • Journal Title

      Journal of Mathematical Physics

      Volume: 57 Issue: 7

    • DOI

      10.1063/1.4959219

    • NAID

      120006488575

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] 確率解析とランダム・シュレディンガー作用素2014

    • Author(s)
      上木 直昌
    • Journal Title

      数学

      Volume: 66

    • NAID

      130006882522

    • Related Report
      2014 Research-status Report
    • Peer Reviewed
  • [Presentation] Asymptotic behavior of the integrated density of states for random point fields associated with certain Fredholm determinants2018

    • Author(s)
      上木 直昌
    • Organizer
      スペクトルセミナー
    • Related Report
      2018 Annual Research Report
  • [Presentation] Asymptotic behavior of the integrated density of states for random point fields associated with certain Fredholm determinants2018

    • Author(s)
      上木 直昌
    • Organizer
      スペクトル散乱理論とその周辺
    • Related Report
      2018 Annual Research Report
  • [Presentation] Anderson localization in Gausian random magnetic fields2015

    • Author(s)
      Naomasa Ueki
    • Organizer
      XVIII International Congress on Mathematical Physics
    • Place of Presentation
      Convention Center of Intercontinental Hotel, Santiago de Chile (チリ)
    • Year and Date
      2015-07-27
    • Related Report
      2015 Research-status Report
  • [Presentation] Anderson localization in Gausian random magnetic fields2015

    • Author(s)
      上木 直昌
    • Organizer
      ランダム作用素のスペクトルと関連する話題
    • Place of Presentation
      京都大学大学院人間・環境学研究科(京都市)
    • Year and Date
      2015-01-08 – 2015-01-10
    • Related Report
      2014 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi