• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Elucidation of phenomena in the higher dimensional domain applying the reduced system and construction of the mathematical method

Research Project

Project/Area Number 26400173
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionUniversity of Miyazaki

Principal Investigator

Tsujikawa Tohru  宮崎大学, 工学部, 教授 (10258288)

Co-Investigator(Renkei-kenkyūsha) KUTO Kousuke  電気通信大学, 情報理工学(系)研究科, 教授 (40386602)
EI Shin-ichiro  北海道大学, 理学研究院, 教授 (30201362)
SAKURAI Tatsunari  山口芸術短期大学, 芸術表現学科, 准教授 (60353322)
Project Period (FY) 2014-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsdifferential equation / bifurcation method / singular perturbation / 微分方程式 / 分岐理論 / 反応拡散方程式 / 特異摂動論 / bifurcation / reaction diffusion / statiionary solution / stability / stationary solution
Outline of Final Research Achievements

The study of Reaction-Diffusion Equation is important to elucidate the pattern formation. This research is to determine the global structure of nonconstant stationary solutions of Lotka-Volterra competition model, which describes the population dynamics of some biology. Under Neumann boundary condition, we show the sufficient condition of the existence of nonconstant solutions for coefficient parameters by Leray-Shauder degree theory. On the other hand, we know that the solution structure is complex by numerical computations. In order to show the global solution structure, we introduce a limiting system by using some reduction to the model equation. It is a scalar equation with an integral constraint. Since the solution structure of this scalar equation is well known by the bifurcation theory, we obtain the global solution structure due to solve the integral constraint by using Levelset analysis.

Report

(4 results)
  • 2017 Final Research Report ( PDF )
  • 2016 Annual Research Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (11 results)

All 2017 2016 2015 2014

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Acknowledgement Compliant: 2 results) Presentation (7 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results)

  • [Journal Article] Exact multiplicity of stationary limiting problem of a cell polarization model2016

    • Author(s)
      Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa and Shoji Yotsutani
    • Journal Title

      Discrete Contin. Dyn. Syst.

      Volume: 36 Pages: 5627-5655

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization2015

    • Author(s)
      1.Tatsuki Mori, Kousuke Kuto, Masaharu Nagayama, Tohru Tsujikawa and Shoji Yotsutani
    • Journal Title

      Dynamical Systems, Differential Equations and Applications

      Volume: suppl Pages: 861-877

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Journal Article] Stationary solutions for some shadow system of the Keller-Segel model with logistic growth2015

    • Author(s)
      3.Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto and Hirofumi Izuhara
    • Journal Title

      Discrete and Continuous Dynamical Systems, Series S

      Volume: 8 Pages: 1023-1034

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Journal Article] Limiting structure of steady-states to the Lotka-Volterra competition model with large diffusion and advection2015

    • Author(s)
      Kousuke Kuto and Tohru Tsujikawa
    • Journal Title

      Journal of Differential Equations

      Volume: 258 Pages: 1801-1058

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Glogal bifurcation and continuation for a nonlocal Allen-Cahn equations2017

    • Author(s)
      Tohru Tsujikawa
    • Organizer
      The international conference on Reaction diffusion system, theory and applications
    • Place of Presentation
      明治大学中野キャンパス
    • Year and Date
      2017-03-16
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 大腸菌パターンにおける伝搬パルス2016

    • Author(s)
      Tohru Tsujikawa
    • Organizer
      数理解析研究所研究集会「題13回生物数学の理論とその周辺
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2016-11-14
    • Related Report
      2016 Annual Research Report
  • [Presentation] 走化性増殖モデル方程式における定常解の大域的構造と安定性について2015

    • Author(s)
      辻川 亨
    • Organizer
      研究集会「第12回生物数学の理論とその応用」
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2015-11-24
    • Related Report
      2015 Research-status Report
  • [Presentation] Bifurcation structure of steady states for a bistable equation with nonlocal constraint2015

    • Author(s)
      Tohru Tsujikawa
    • Organizer
      Mini-workshop on Models of Directional Movement and their Analysis
    • Place of Presentation
      宮城県仙台市東北大学川井ホール
    • Year and Date
      2015-03-28
    • Related Report
      2014 Research-status Report
  • [Presentation] Stationary and spatio-temporal patterns for a chemotaxis-growth model2015

    • Author(s)
      Tohru Tsujikawa
    • Organizer
      Mini-workshop on Models of Directional Movement and their Analysis
    • Place of Presentation
      宮城県仙台市東北大学川井ホール
    • Year and Date
      2015-03-27
    • Related Report
      2014 Research-status Report
  • [Presentation] 移流を伴う双安定反応拡散方程式の定常問題について2014

    • Author(s)
      辻川 亨
    • Organizer
      研究集会「実領域における常微分方程式の定性的理論とその応用」
    • Place of Presentation
      京都府京都市京都大学数理解析研究所
    • Year and Date
      2014-11-06
    • Related Report
      2014 Research-status Report
  • [Presentation] 移流反応拡散方程式におけるパターン形成について2014

    • Author(s)
      辻川 亨
    • Organizer
      研究集会「生物数学の理論とその応用」
    • Place of Presentation
      京都府京都市京都大学数理解析研究所
    • Year and Date
      2014-09-17
    • Related Report
      2014 Research-status Report
    • Invited

URL: 

Published: 2014-04-04   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi