• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

High Performance Linear Solver Library Using Information Obtained in Previous Solution Steps

Research Project

Project/Area Number 26540052
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field High performance computing
Research InstitutionHokkaido University

Principal Investigator

IWASHITA TAKESHI  北海道大学, 情報基盤センター, 教授 (30324685)

Co-Investigator(Renkei-kenkyūsha) MIFUNE TAKESHI  京都大学, 大学院工学研究科, 助教 (20362460)
Project Period (FY) 2014-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords高性能計算 / 線形反復法 / 誤差修正法 / 自動生成 / ハイパフォーマンスコンピューティング / 数値解析 / 電磁場解析 / 有限要素解析 / ハイパフォーマンス・コンピューティング / 情報システム / 機械学習
Outline of Final Research Achievements

In this research, we focused on a series of linear systems having an identical or similar coefficient matrix. We examined the improvement of convergence of the linear solver by means of error correction methods. In the research, we proposed an automatic construction method for a mapping operator for the error correction method based on the information obtained in the previous solution steps. Because the proposed method constructs an appropriate mapping operator with minimum memory requirement, it is easily applied to practical simulations. The proposed method was examined in the context of time-dependent electromagnetic field problems. Numerical tests of 2-d and 3-d eddy-current finite element analyses with T-Omega formulation confirmed the effectiveness of the method.

Report

(3 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • Research Products

    (6 results)

All 2016 2015 2014

All Presentation (6 results)

  • [Presentation] 過去の求解プロセスを利用した誤差修正法の3次元渦電流解析への適用2016

    • Author(s)
      河口 慈, 美舩 健, 岩下武史, 松尾哲司
    • Organizer
      平成28年電気学会全国大会
    • Place of Presentation
      東北大学(宮城県・仙台市)
    • Year and Date
      2016-03-16
    • Related Report
      2015 Annual Research Report
  • [Presentation] 過去の求解プロセスを利用した誤差修正法による2次元渦電流解析の高速化2016

    • Author(s)
      河口慈, 美舩健, 岩下武史, 松尾哲司
    • Organizer
      電気学会静止器・回転機合同研究会
    • Place of Presentation
      汐留シティセンター(東京都・港区)
    • Year and Date
      2016-01-20
    • Related Report
      2015 Annual Research Report
  • [Presentation] 過去の求解プロセス情報を活用した誤差修正用写像行列の構築2015

    • Author(s)
      岩下武史, 河口慈, 美舩健, 松尾哲司
    • Organizer
      日本応用数理学会 2015年度年会
    • Place of Presentation
      金沢大学(石川県・金沢市)
    • Year and Date
      2015-09-11
    • Related Report
      2015 Annual Research Report
  • [Presentation] fill-in strategy for fast ICCG solver with SIMD vectorization2015

    • Author(s)
      Takeshi Iwashita, Naokazu Takemura and Hiroshi Nakashima
    • Organizer
      nnual Meeting on Advanced Computing System and Infrastructure (ACSI2015)
    • Place of Presentation
      つくば国際会議場(茨城県・つくば市)
    • Year and Date
      2015-01-26
    • Related Report
      2014 Research-status Report
  • [Presentation] 回転機の磁界解析における時間分割型並列有限要素法の有効性検証2014

    • Author(s)
      高橋康人, 徳増正, 藤原耕二, 岩下武史, 中島浩
    • Organizer
      日本機械学会 第27回計算力学講演会
    • Place of Presentation
      岩手大学(岩手県・盛岡市)
    • Year and Date
      2014-11-23
    • Related Report
      2014 Research-status Report
  • [Presentation] SIMD Implementation of a Multiplicative Schwarz Smoother for a Multigrid Poisson Solver on an Intel Xeon Phi Coprocessor2014

    • Author(s)
      Masatoshi Kawai, Takeshi Iwashita and Hiroshi Nakashima
    • Organizer
      VECPAR2014
    • Place of Presentation
      Eugene (USA)
    • Year and Date
      2014-07-02
    • Related Report
      2014 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi