• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Graph sampling techniques for precise estimation of large-scale graph measures

Research Project

Project/Area Number 26540161
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Web informatics, Service informatics
Research InstitutionTokyo Institute of Technology

Principal Investigator

Shudo Kazuyuki  東京工業大学, 情報理工学(系)研究科, 准教授 (90308271)

Co-Investigator(Kenkyū-buntansha) AKIOKA SAYAKA  明治大学, 総合数理学部, 准教授 (90333533)
Project Period (FY) 2014-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2015: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2014: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordsグラフサンプリング / 大規模グラフ
Outline of Final Research Achievements

Graph sampling is an effective approach to estimate measures of graphs in case it is not possible to analyze an etire graph for reasons such as difficulty in obtaining and its great magnitude. We took two approaches to improve precision of the estimation. An approach is assuming a target graph to be a complex network and utilizing the assumption. Another approach is replacing normal random walk with non-backtracking random walk. The latter approach reduced the number of sampling steps to collect a certain number of vertexes in comparison to the existing best technique and improved the precision even with the same number of sampled vertexes.

Report

(3 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • Research Products

    (2 results)

All 2016

All Presentation (2 results)

  • [Presentation] ソーシャルグラフ向けクラスタ係数推定手法の効率化2016

    • Author(s)
      岩﨑謙汰, 華井雅俊, 首藤一幸
    • Organizer
      第8回 広域センサネットワークとオーバレイネットワークに関するワークショップ
    • Place of Presentation
      東京工業大学, 目黒区, 東京都, 日本
    • Year and Date
      2016-03-22
    • Related Report
      2015 Annual Research Report
  • [Presentation] ソーシャルグラフ向けクラスタ係数推定手法の効率化2016

    • Author(s)
      岩﨑謙汰, 華井雅俊, 首藤一幸
    • Organizer
      第8回データ工学と情報マネジメントに関するフォーラム (DEIM2016)
    • Place of Presentation
      ヒルトン福岡シーホーク, 博多市, 福岡県, 日本
    • Year and Date
      2016-02-29
    • Related Report
      2015 Annual Research Report

URL: 

Published: 2014-04-04   Modified: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi