• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Representation theory of Iwanaga-Gorenstein rings from the viewpont of tilting thoery

Research Project

Project/Area Number 26800007
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionUniversity of Yamanashi

Principal Investigator

YAMAURA Kota  山梨大学, 大学院総合研究部, 助教 (60633245)

Project Period (FY) 2014-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords岩永-Gorenstein環 / Cohen-Macaulay加群 / 三角圏 / 傾理論 / 傾対象 / 安定圏
Outline of Final Research Achievements

The purpose is to study the stable category of graded Cohen-Macaulay modules over graded Iwanaga-Gorenstein rings from the viewpoint of tilting theory. We have the following results.
1. For a one dimensional graded commutative Gorenstein ring A with some assumptions, the thick subcategory generated by the syzygies of graded simple modules in the stable category of graded Cohen-Macaulay A-modules has a silting object. Moreover, the thick subcategory has a tilting object if and only if either A is regular or the a-invariant of A is non-negative.
2. Let R be an algebra over a filed and C be a bimodule. Assume that the trivial extension A of R by C is Iwanaga-Gorenstein. Then the stable category of graded Cohen-Macaulay A-modules can be realized as an admissible subcategory of the bounded derived category of the category of finitely generated R-modules if the global dimension of R is finite.

Report

(5 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (4 results)

All 2017 2014 Other

All Presentation (2 results) (of which Invited: 2 results) Remarks (2 results)

  • [Presentation] 正次数付き岩永-Gorenstein 代数について2017

    • Author(s)
      山浦浩太
    • Organizer
      第7回(非)可換代数とトポロジー
    • Place of Presentation
      信州大学松本キャンパス(長野県松本市)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Tilting theory for one dimensional hypersurfaces2014

    • Author(s)
      Kota Yamaura
    • Organizer
      Advances in Representation Theory of Algebras
    • Place of Presentation
      Canada Montreal
    • Year and Date
      2014-06-20
    • Related Report
      2014 Research-status Report
    • Invited
  • [Remarks] Kota Yamaura's Homepage

    • URL

      http://www.ccn.yamanashi.ac.jp/~kyamaura/index.html

    • Related Report
      2017 Annual Research Report 2016 Research-status Report 2015 Research-status Report
  • [Remarks] ホームページ

    • URL

      http://www.ccn.yamanashi.ac.jp/~kyamaura/index.html

    • Related Report
      2014 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi