• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of congruences and p-adic properties for modular forms with several variables

Research Project

Project/Area Number 26800026
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionFukuoka Institute of Technology (2015-2017)
Ritsumeikan University (2014)

Principal Investigator

Kikuta Toshiyuki  福岡工業大学, 情報工学部, 助教 (60569953)

Research Collaborator Boecherer Siegfried  
KODAMA Hirotaka  
TAKEMORI Sho  
NAGAOKA Shoyu  
Project Period (FY) 2014-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2014: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords法p特異モジュラー形式 / 合同 / p進 / Siegelモジュラー形式 / Fourier係数 / Ramanujan作用素 / テータ作用素 / Eisenstein級数 / 特異モジュラー形式 / Ramanujan / Hermiteモジュラー形式 / カスプ形式 / ラマヌジャン作用素 / フーリエ係数 / アイゼンシュタイン級数 / p進モジュラー形式 / ジーゲルモジュラー形式 / テータ級数 / Sturm bound / テータ作要素 / モジュラー形式 / 整数論
Outline of Final Research Achievements

The reporter has been studied congruences and p-adic properties for modular forms of several variables, keeping in mind that he applies them to zeta functions (L-functions) which have many number theoretical information such as primes. In the previous study, the reporter found some examples of Siegel modular forms not satisfying the condition of several variables version of that in Serre's p-adic theory of modular forms of one variable. He named such the notions "mod p singular modular forms" and has studied it. As results of this study, he obtained some conditions which should be satisfied by the weights of mod p singular modular forms, and he also obtained the weight conditions for the "kernel of theta operator modulo p" which is a weaker version of the notion of "mod p singularity". As applications of these results, he got also some information of p-factor of special values of L-functions which appear in the Fourier coefficients of the Klingen type Eisenstein series.

Report

(5 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (14 results)

All 2018 2017 2016 2015 2014 Other

All Int'l Joint Research (1 results) Journal Article (6 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 6 results,  Acknowledgement Compliant: 3 results,  Open Access: 1 results) Presentation (3 results) (of which Invited: 3 results) Remarks (4 results)

  • [Int'l Joint Research] University of Mannheim(Germany)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Weights of the mod p kernels of the theta operators2018

    • Author(s)
      Siegfried Boecherer, Toshiyuki Kikuta, Sho Takemori
    • Journal Title

      Canad. J. Math.

      Volume: 70 Issue: 2 Pages: 241-264

    • DOI

      10.4153/cjm-2017-014-0

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the theta operator for Hermitian modular forms of degree 22017

    • Author(s)
      Toshiyuki Kikuta and Shoyu Nagaoka
    • Journal Title

      Abh. Math. Semin. Univ. Hamburg

      Volume: 87 Issue: 1 Pages: 145-163

    • DOI

      10.1007/s12188-016-0141-6

    • Related Report
      2017 Annual Research Report 2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] On mod p singular modular forms2016

    • Author(s)
      Siegfried Boecherer, Toshiyuki Kikuta
    • Journal Title

      Forum Mathematicum

      Volume: 28 Issue: 6 Pages: 1051-1065

    • DOI

      10.1515/forum-2015-0062

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Remark on Sturm bounds for Siegel modular forms of degree 22015

    • Author(s)
      Toshiyuki Kikuta
    • Journal Title

      Proceedings of the Japan Academy, Ser. A, Mathematical Sciences

      Volume: 91 Issue: 6 Pages: 82-84

    • DOI

      10.3792/pjaa.91.82

    • NAID

      40020519464

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Note on Igusa's cusp form of weight 352015

    • Author(s)
      Toshiyuki Kikuta, Hirotaka Kodama, Shoyu Nagaoka
    • Journal Title

      Rocky Mountain Journal of Mathematics

      Volume: 45 Issue: 3 Pages: 963-972

    • DOI

      10.1216/rmj-2015-45-3-963

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Journal Article] Ramanujan type congruences for the Klingen-Eisenstein series2014

    • Author(s)
      Toshiyuki Kikuta, Sho Takemori
    • Journal Title

      Abhandlungen aus dem Mathematischen Seminar der Universitaet Hamburg

      Volume: 84 Issue: 2 Pages: 257-266

    • DOI

      10.1007/s12188-014-0098-2

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Weights of the mod p kernels of theta operators2017

    • Author(s)
      菊田俊幸
    • Organizer
      マンハイム大学数学講演会 マンハイム大学
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] Weights of the mod p kernels of theta operators2017

    • Author(s)
      菊田俊幸
    • Organizer
      アーヘン工科大学数学談話会 アーヘン工科大学
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] Siegelモジュラー形式の場合におけるRamanujan型の合同2014

    • Author(s)
      菊田俊幸
    • Organizer
      interdisciplinary seminar
    • Place of Presentation
      近畿大学(産業理工学部) (福岡県)
    • Year and Date
      2014-10-10
    • Related Report
      2014 Research-status Report
    • Invited
  • [Remarks] 菊田俊幸のホームページ

    • Related Report
      2017 Annual Research Report
  • [Remarks] FIT 福岡工業大学 研究者情報

    • Related Report
      2017 Annual Research Report
  • [Remarks] Toshiyuki Kikuta HOMEPAGE

    • URL

      http://kikuta.yohamanzokuja.com/

    • Related Report
      2016 Research-status Report 2015 Research-status Report 2014 Research-status Report
  • [Remarks] 研究者情報

    • URL

      http://www.fit.ac.jp/research/search/profile/id/229

    • Related Report
      2016 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi